$\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathcal{P}\webleft (A\times B\webright )}\phantom{\mkern 375mu}$
$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 375mu}$
(by Item 2 of Proposition 2.5.1.1.4)
$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 375mu}$
(by Item 2 of Proposition 2.1.3.1.3)
$\phantom{\mathrm{Rel}\webleft (\text{Gr}\webleft (A\webright ),B\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 375mu}$
(by Item 2 of Proposition 2.5.1.1.4)
Naturality in $B$ is then the statement that given a relation $R\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B'$, the diagram