A relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ from $A$ to $B$1,2 is equivalently:
- A subset $R$ of $A\times B$.
- A function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $.
- A function from $A$ to $\mathcal{P}\webleft (B\webright )$.
- A function from $B$ to $\mathcal{P}\webleft (A\webright )$.
- A cocontinuous morphism of posets from $\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )$ to $\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )$.
1Further Terminology: Also called a multivalued function from $A$ to $B$.
2Further Terminology: When $A=B$, we also call $R\subset A\times A$ a relation on $A$.