6 Relations

This chapter contains some material about relations. Notably, we discuss and explore:

  1. 1. The definition of relations (Section 6.1.1).
  2. 2. How relations may be viewed as decategorification of profunctors (Section 6.1.2).
  3. 3. The various kind of categories that relations form, namely:
    1. (a) A category (Section 6.2.2).
    2. (b) A monoidal category (Section 6.2.3).
    3. (c) A 2-category (Section 6.2.4).
    4. (d) A double category (Section 6.2.5).
  4. 4. The various categorical properties of the 2-category of relations, including:
    1. (a) The self-duality of Rel and Rel (Proposition 6.3.1.1.1).
    2. (b) Identifications of equivalences and isomorphisms in Rel with bijections (Proposition 6.3.2.1.1).
    3. (c) Identifications of adjunctions in Rel with functions (Proposition 6.3.3.1.1).
    4. (d) Identifications of monads in Rel with preorders (Proposition 6.3.4.1.1).
    5. (e) Identifications of comonads in Rel with subsets (Proposition 6.3.5.1.1).
    6. (f) A description of the monoids and comonoids in Rel with respect to the Cartesian product (Remark 6.3.6.1.1).
    7. (g) Characterisations of monomorphisms in Rel (Proposition 6.3.7.1.1).
    8. (h) Characterisations of 2-categorical notions of monomorphisms in Rel (Proposition 6.3.8.1.1).
    9. (i) Characterisations of epimorphisms in Rel (Proposition 6.3.9.1.1).
    10. (j) Characterisations of 2-categorical notions of epimorphisms in Rel (Proposition 6.3.10.1.1).
    11. (k) The partial co/completeness of Rel (Proposition 6.3.11.1.1).
    12. (l) The existence or non-existence of Kan extensions and Kan lifts in Rel (Remark 6.3.12.1.1).
    13. (m) The closedness of Rel (Proposition 6.3.13.1.1).
    14. (n) The identification of Rel with the category of free algebras of the powerset monad on Sets (Proposition 6.3.14.1.1).
  5. 5. A description of two notions of “skew composition” on Rel(A,B), giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on Fun(C,D) appearing in the definition of a relative monad (Section 6.4 and Section 6.5).
  • Section 6.1: Relations
    • Subsection 6.1.1: Foundations
    • Subsection 6.1.2: Relations as Decategorifications of Profunctors
      • Remark 6.1.2.1.1: Relations as Decategorifications of Profunctors I
      • Remark 6.1.2.1.2: Relations as Decategorifications of Profunctors II
    • Subsection 6.1.3: Examples of Relations
    • Subsection 6.1.4: Functional Relations
      • Definition 6.1.4.1.1: Functional Relations
      • Proposition 6.1.4.1.2: Properties of Functional Relations
    • Subsection 6.1.5: Total Relations
      • Definition 6.1.5.1.1: Total Relations
      • Proposition 6.1.5.1.2: Properties of Total Relations
  • Section 6.2: Categories of Relations
    • Subsection 6.2.1: The Category of Relations Between Two Sets
      • Definition 6.2.1.1.1: The Category of Relations Between Two Sets
    • Subsection 6.2.2: The Category of Relations
      • Definition 6.2.2.1.1: The Category of Relations
    • Subsection 6.2.3: The Closed Symmetric Monoidal Category of Relations
      • Subsubsection 6.2.3.1: The Monoidal Product
        • Definition 6.2.3.1.1: The Monoidal Product of Rel
      • Subsubsection 6.2.3.2: The Monoidal Unit
        • Definition 6.2.3.2.1: The Monoidal Unit of Rel
      • Subsubsection 6.2.3.3: The Associator
        • Definition 6.2.3.3.1: The Associator of Rel
      • Subsubsection 6.2.3.4: The Left Unitor
        • Definition 6.2.3.4.1: The Left Unitor of Rel
      • Subsubsection 6.2.3.5: The Right Unitor
        • Definition 6.2.3.5.1: The Right Unitor of Rel
      • Subsubsection 6.2.3.6: The Symmetry
      • Subsubsection 6.2.3.7: The Internal Hom
        • Definition 6.2.3.7.1: The Internal Hom of Rel
        • Proposition 6.2.3.7.2: Properties of the Internal Hom of Rel
      • Subsubsection 6.2.3.8: The Closed Symmetric Monoidal Category of Relations
        • Proposition 6.2.3.8.1: The Closed Symmetric Monoidal Category of Relations
    • Subsection 6.2.4: The 2-Category of Relations
      • Definition 6.2.4.1.1: The 2-Category of Relations
    • Subsection 6.2.5: The Double Category of Relations
      • Subsubsection 6.2.5.1: The Double Category of Relations
        • Definition 6.2.5.1.1: The Double Category of Relations
      • Subsubsection 6.2.5.2: Horizontal Identities
        • Definition 6.2.5.2.1: The Horizontal Identities of Reldbl
      • Subsubsection 6.2.5.3: Horizontal Composition
        • Definition 6.2.5.3.1: The Horizontal Composition of Reldbl
      • Subsubsection 6.2.5.4: Vertical Composition of 2-Morphisms
        • Definition 6.2.5.4.1: The Vertical Composition of 2-Morphisms in Reldbl
      • Subsubsection 6.2.5.5: The Associators
        • Definition 6.2.5.5.1: The Associators of Reldbl
      • Subsubsection 6.2.5.6: The Left Unitors
        • Definition 6.2.5.6.1: The Left Unitors of Reldbl
      • Subsubsection 6.2.5.7: The Right Unitors
        • Definition 6.2.5.7.1: The Right Unitors of Reldbl
  • Section 6.3: Properties of the 2-Category of Relations
    • Subsection 6.3.1: Self-Duality
      • Proposition 6.3.1.1.1: Self-Duality for the (2-)Category of Relations
    • Subsection 6.3.2: Isomorphisms and Equivalences in Rel
      • Proposition 6.3.2.1.1: Isomorphisms and Equivalences in Rel
    • Subsection 6.3.3: Adjunctions in Rel
    • Subsection 6.3.4: Monads in Rel
    • Subsection 6.3.5: Comonads in Rel
    • Subsection 6.3.6: Co/Monoids in Rel
    • Subsection 6.3.7: Monomorphisms in Rel
      • Proposition 6.3.7.1.1: Characterisations of Monomorphisms in Rel
    • Subsection 6.3.8: 2-Categorical Monomorphisms in Rel
      • Proposition 6.3.8.1.1: 2-Categorical Monomorphisms in Rel
      • Question 6.3.8.1.2: Better Characterisations of Representably Full Morphisms in Rel
    • Subsection 6.3.9: Epimorphisms in Rel
      • Proposition 6.3.9.1.1: Characterisations of Epimorphisms in Rel
    • Subsection 6.3.10: 2-Categorical Epimorphisms in Rel
      • Proposition 6.3.10.1.1: 2-Categorical Epimorphisms in Rel
      • Question 6.3.10.1.2: Better Characterisations of Corepresentably Full Morphisms in Rel
    • Subsection 6.3.11: Co/Limits in Rel
    • Subsection 6.3.12: Kan Extensions and Kan Lifts in Rel
      • Remark 6.3.12.1.1: Kan Extensions and Kan Lifts in Rel
    • Subsection 6.3.13: Closedness of Rel
    • Subsection 6.3.14: Rel as a Category of Free Algebras
      • Proposition 6.3.14.1.1: Rel as a Category of Free Algebras
  • Section 6.4: The Left Skew Monoidal Structure on Rel(A,B)
    • Subsection 6.4.1: The Left Skew Monoidal Product
      • Definition 6.4.1.1.1: The Left J-Skew Monoidal Product of Rel(A,B)
    • Subsection 6.4.2: The Left Skew Monoidal Unit
      • Definition 6.4.2.1.1: The Left J-Skew Monoidal Unit of Rel(A,B)
    • Subsection 6.4.3: The Left Skew Associators
      • Definition 6.4.3.1.1: The Left J-Skew Associator of Rel(A,B)
    • Subsection 6.4.4: The Left Skew Left Unitors
      • Definition 6.4.4.1.1: The Left J-Skew Left Unitor of Rel(A,B)
    • Subsection 6.4.5: The Left Skew Right Unitors
      • Definition 6.4.5.1.1: The Left J-Skew Right Unitor of Rel(A,B)
    • Subsection 6.4.6: The Left Skew Monoidal Structure on Rel(A,B)
      • Proposition 6.4.6.1.1: The Left J-Skew Monoidal Structure on Rel(A,B)
  • Section 6.5: The Right Skew Monoidal Structure on Rel(A,B)
    • Subsection 6.5.1: The Right Skew Monoidal Product
      • Definition 6.5.1.1.1: The Right J-Skew Monoidal Product of Rel(A,B)
    • Subsection 6.5.2: The Right Skew Monoidal Unit
      • Definition 6.5.2.1.1: The Right J-Skew Monoidal Unit of Rel(A,B)
    • Subsection 6.5.3: The Right Skew Associators
      • Definition 6.5.3.1.1: The Right J-Skew Associator of Rel(A,B)
    • Subsection 6.5.4: The Right Skew Left Unitors
      • Definition 6.5.4.1.1: The Right J-Skew Left Unitor of Rel(A,B)
    • Subsection 6.5.5: The Right Skew Right Unitors
      • Definition 6.5.5.1.1: The Right J-Skew Right Unitor of Rel(A,B)
    • Subsection 6.5.6: The Right Skew Monoidal Structure on Rel(A,B)
      • Proposition 6.5.6.1.1: The Right J-Skew Monoidal Structure on Rel(A,B)

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: