6 Relations
This chapter contains some material about relations. Notably, we discuss and explore:
- 1. The definition of relations (Section 6.1.1).
- 2. How relations may be viewed as decategorification of profunctors (Section 6.1.2).
- 3.
The various kind of categories that relations form, namely:
- (a) A category (Section 6.2.2).
- (b) A monoidal category (Section 6.2.3).
- (c)
A
-category (Section 6.2.4). - (d) A double category (Section 6.2.5).
- 4.
The various categorical properties of the
-category of relations, including:- (a)
The self-duality of
and (Proposition 6.3.1.1.1). - (b)
Identifications of equivalences and isomorphisms in
with bijections (Proposition 6.3.2.1.1). - (c)
Identifications of adjunctions in
with functions (Proposition 6.3.3.1.1). - (d)
Identifications of monads in
with preorders (Proposition 6.3.4.1.1). - (e)
Identifications of comonads in
with subsets (Proposition 6.3.5.1.1). - (f)
A description of the monoids and comonoids in
with respect to the Cartesian product (Remark 6.3.6.1.1). - (g)
Characterisations of monomorphisms in
(Proposition 6.3.7.1.1). - (h)
Characterisations of
-categorical notions of monomorphisms in (Proposition 6.3.8.1.1). - (i)
Characterisations of epimorphisms in
(Proposition 6.3.9.1.1). - (j)
Characterisations of
-categorical notions of epimorphisms in (Proposition 6.3.10.1.1). - (k)
The partial co/completeness of
(Proposition 6.3.11.1.1). - (l)
The existence or non-existence of Kan extensions and Kan lifts in
(Remark 6.3.12.1.1). - (m)
The closedness of
(Proposition 6.3.13.1.1). - (n)
The identification of
with the category of free algebras of the powerset monad on (Proposition 6.3.14.1.1).
- (a)
The self-duality of
- 5.
A description of two notions of “skew composition” on
, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on appearing in the definition of a relative monad (Section 6.4 and Section 6.5).
- Section 6.1: Relations
-
Section 6.2: Categories of Relations
-
Subsection 6.2.1: The Category of Relations Between Two Sets
- Definition 6.2.1.1.1: The Category of Relations Between Two Sets
-
Subsection 6.2.2: The Category of Relations
- Definition 6.2.2.1.1: The Category of Relations
-
Subsection 6.2.3: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 6.2.3.1: The Monoidal Product
-
Definition 6.2.3.1.1: The Monoidal Product of
-
Definition 6.2.3.1.1: The Monoidal Product of
-
Subsubsection 6.2.3.2: The Monoidal Unit
-
Definition 6.2.3.2.1: The Monoidal Unit of
-
Definition 6.2.3.2.1: The Monoidal Unit of
-
Subsubsection 6.2.3.3: The Associator
-
Definition 6.2.3.3.1: The Associator of
-
Definition 6.2.3.3.1: The Associator of
-
Subsubsection 6.2.3.4: The Left Unitor
-
Definition 6.2.3.4.1: The Left Unitor of
-
Definition 6.2.3.4.1: The Left Unitor of
-
Subsubsection 6.2.3.5: The Right Unitor
-
Definition 6.2.3.5.1: The Right Unitor of
-
Definition 6.2.3.5.1: The Right Unitor of
-
Subsubsection 6.2.3.6: The Symmetry
-
Definition 6.2.3.6.1: The Symmetry of
-
Definition 6.2.3.6.1: The Symmetry of
- Subsubsection 6.2.3.7: The Internal Hom
-
Subsubsection 6.2.3.8: The Closed Symmetric Monoidal Category of Relations
- Proposition 6.2.3.8.1: The Closed Symmetric Monoidal Category of Relations
-
Subsubsection 6.2.3.1: The Monoidal Product
-
Subsection 6.2.4: The
-Category of Relations-
Definition 6.2.4.1.1: The
-Category of Relations
-
Definition 6.2.4.1.1: The
-
Subsection 6.2.5: The Double Category of Relations
-
Subsubsection 6.2.5.1: The Double Category of Relations
- Definition 6.2.5.1.1: The Double Category of Relations
-
Subsubsection 6.2.5.2: Horizontal Identities
-
Definition 6.2.5.2.1: The Horizontal Identities of
-
Definition 6.2.5.2.1: The Horizontal Identities of
-
Subsubsection 6.2.5.3: Horizontal Composition
-
Definition 6.2.5.3.1: The Horizontal Composition of
-
Definition 6.2.5.3.1: The Horizontal Composition of
-
Subsubsection 6.2.5.4: Vertical Composition of 2-Morphisms
-
Definition 6.2.5.4.1: The Vertical Composition of 2-Morphisms in
-
Definition 6.2.5.4.1: The Vertical Composition of 2-Morphisms in
-
Subsubsection 6.2.5.5: The Associators
-
Definition 6.2.5.5.1: The Associators of
-
Definition 6.2.5.5.1: The Associators of
-
Subsubsection 6.2.5.6: The Left Unitors
-
Definition 6.2.5.6.1: The Left Unitors of
-
Definition 6.2.5.6.1: The Left Unitors of
-
Subsubsection 6.2.5.7: The Right Unitors
-
Definition 6.2.5.7.1: The Right Unitors of
-
Definition 6.2.5.7.1: The Right Unitors of
-
Subsubsection 6.2.5.1: The Double Category of Relations
-
Subsection 6.2.1: The Category of Relations Between Two Sets
-
Section 6.3: Properties of the
-Category of Relations-
Subsection 6.3.1: Self-Duality
- Proposition 6.3.1.1.1: Self-Duality for the (2-)Category of Relations
-
Subsection 6.3.2: Isomorphisms and Equivalences in
-
Proposition 6.3.2.1.1: Isomorphisms and Equivalences in
-
Proposition 6.3.2.1.1: Isomorphisms and Equivalences in
-
Subsection 6.3.3: Adjunctions in
-
Proposition 6.3.3.1.1: Adjunctions in
-
Proposition 6.3.3.1.1: Adjunctions in
-
Subsection 6.3.4: Monads in
-
Proposition 6.3.4.1.1: Monads in
-
Proposition 6.3.4.1.1: Monads in
-
Subsection 6.3.5: Comonads in
-
Proposition 6.3.5.1.1: Comonads in
-
Proposition 6.3.5.1.1: Comonads in
-
Subsection 6.3.6: Co/Monoids in
-
Remark 6.3.6.1.1: Co/Monoids in
-
Remark 6.3.6.1.1: Co/Monoids in
-
Subsection 6.3.7: Monomorphisms in
-
Proposition 6.3.7.1.1: Characterisations of Monomorphisms in
-
Proposition 6.3.7.1.1: Characterisations of Monomorphisms in
-
Subsection 6.3.8: 2-Categorical Monomorphisms in
-
Subsection 6.3.9: Epimorphisms in
-
Proposition 6.3.9.1.1: Characterisations of Epimorphisms in
-
Proposition 6.3.9.1.1: Characterisations of Epimorphisms in
-
Subsection 6.3.10: 2-Categorical Epimorphisms in
-
Proposition 6.3.10.1.1: 2-Categorical Epimorphisms in
-
Question 6.3.10.1.2: Better Characterisations of Corepresentably Full Morphisms in
-
Proposition 6.3.10.1.1: 2-Categorical Epimorphisms in
-
Subsection 6.3.11: Co/Limits in
-
Proposition 6.3.11.1.1: Co/Limits in
-
Proposition 6.3.11.1.1: Co/Limits in
-
Subsection 6.3.12: Kan Extensions and Kan Lifts in
-
Remark 6.3.12.1.1: Kan Extensions and Kan Lifts in
-
Remark 6.3.12.1.1: Kan Extensions and Kan Lifts in
-
Subsection 6.3.13: Closedness of
-
Proposition 6.3.13.1.1: Closedness of
-
Proposition 6.3.13.1.1: Closedness of
-
Subsection 6.3.14:
as a Category of Free Algebras-
Proposition 6.3.14.1.1:
as a Category of Free Algebras
-
Proposition 6.3.14.1.1:
-
Subsection 6.3.1: Self-Duality
-
Section 6.4: The Left Skew Monoidal Structure on
-
Subsection 6.4.1: The Left Skew Monoidal Product
-
Definition 6.4.1.1.1: The Left
-Skew Monoidal Product of
-
Definition 6.4.1.1.1: The Left
-
Subsection 6.4.2: The Left Skew Monoidal Unit
-
Definition 6.4.2.1.1: The Left
-Skew Monoidal Unit of
-
Definition 6.4.2.1.1: The Left
-
Subsection 6.4.3: The Left Skew Associators
-
Definition 6.4.3.1.1: The Left
-Skew Associator of
-
Definition 6.4.3.1.1: The Left
-
Subsection 6.4.4: The Left Skew Left Unitors
-
Definition 6.4.4.1.1: The Left
-Skew Left Unitor of
-
Definition 6.4.4.1.1: The Left
-
Subsection 6.4.5: The Left Skew Right Unitors
-
Definition 6.4.5.1.1: The Left
-Skew Right Unitor of
-
Definition 6.4.5.1.1: The Left
-
Subsection 6.4.6: The Left Skew Monoidal Structure on
-
Proposition 6.4.6.1.1: The Left
-Skew Monoidal Structure on
-
Proposition 6.4.6.1.1: The Left
-
Subsection 6.4.1: The Left Skew Monoidal Product
-
Section 6.5: The Right Skew Monoidal Structure on
-
Subsection 6.5.1: The Right Skew Monoidal Product
-
Definition 6.5.1.1.1: The Right
-Skew Monoidal Product of
-
Definition 6.5.1.1.1: The Right
-
Subsection 6.5.2: The Right Skew Monoidal Unit
-
Definition 6.5.2.1.1: The Right
-Skew Monoidal Unit of
-
Definition 6.5.2.1.1: The Right
-
Subsection 6.5.3: The Right Skew Associators
-
Definition 6.5.3.1.1: The Right
-Skew Associator of
-
Definition 6.5.3.1.1: The Right
-
Subsection 6.5.4: The Right Skew Left Unitors
-
Definition 6.5.4.1.1: The Right
-Skew Left Unitor of
-
Definition 6.5.4.1.1: The Right
-
Subsection 6.5.5: The Right Skew Right Unitors
-
Definition 6.5.5.1.1: The Right
-Skew Right Unitor of
-
Definition 6.5.5.1.1: The Right
-
Subsection 6.5.6: The Right Skew Monoidal Structure on
-
Proposition 6.5.6.1.1: The Right
-Skew Monoidal Structure on
-
Proposition 6.5.6.1.1: The Right
-
Subsection 6.5.1: The Right Skew Monoidal Product