Item 1: Representably Faithful Morphisms in $\textbf{Rel}$
The relation $R$ is a representably faithful morphism in $\textbf{Rel}$ iff, for each $X\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the functor
\[ R_{*}\colon \mathbf{Rel}\webleft (X,A\webright )\to \mathbf{Rel}\webleft (X,B\webright ) \]
is faithful, i.e. iff the morphism
\[ R_{*|S,T}\colon \textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )\to \textup{Hom}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,R\mathbin {\diamond }T\webright ) \]
is injective for each $S,T\in \text{Obj}\webleft (\mathbf{Rel}\webleft (X,A\webright )\webright )$. However, $\textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )$ is either empty or a singleton, in either case of which the map $R_{*|S,T}$ is necessarily injective.
Item 2: Representably Full Morphisms in $\textbf{Rel}$
We claim Item (a), Item (b), Item (c), Item (d), Item (e), and Item (f) are indeed equivalent: - Item (a)$\iff $Item (b): This is simply a matter of unwinding definitions: The relation $R$ is a representably full morphism in $\textbf{Rel}$ iff, for each $X\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the functor
\[ R_{*}\colon \mathbf{Rel}\webleft (X,A\webright )\to \mathbf{Rel}\webleft (X,B\webright ) \]
is full, i.e. iff the morphism
\[ R_{*|S,T}\colon \textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )\to \textup{Hom}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,R\mathbin {\diamond }T\webright ) \]
is surjective for each $S,T\in \text{Obj}\webleft (\mathbf{Rel}\webleft (X,A\webright )\webright )$, i.e. iff, whenever $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, we also have $S\subset T$.
- Item (c)$\iff $Item (d): This is also simply a matter of unwinding definitions: The functor
\[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]
is full iff, for each $U,V\in \mathcal{P}\webleft (A\webright )$, the morphism
\[ R_{*|U,V}\colon \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,V\webright )\to \textup{Hom}_{\mathcal{P}\webleft (B\webright )}\webleft (R_{*}\webleft (U\webright ),R_{*}\webleft (V\webright )\webright ) \]
is surjective, i.e. iff whenever $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, we also necessarily have $U\subset V$.
- Item (e)$\iff $Item (f): This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Item (c) and Item (d) given above.
- Item (d)$\implies $Item (f): Suppose that the following condition is true:
- For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
We need to show that the condition - For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
is also true. We proceed step by step: - Suppose we have $U,V\in \mathcal{P}\webleft (A\webright )$ with $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$.
- By Chapter 7: Constructions With Relations, Item 7 of Proposition 7.4.4.1.3, we have
\begin{align*} R_{!}\webleft (U\webright ) & = B\setminus R_{*}\webleft (A\setminus U\webright ),\\ R_{!}\webleft (V\webright ) & = B\setminus R_{*}\webleft (A\setminus V\webright ). \end{align*}
- By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 we have $R_{*}\webleft (A\setminus V\webright )\subset R_{*}\webleft (A\setminus U\webright )$.
- By assumption, we then have $A\setminus V\subset A\setminus U$.
- By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 again, we have $U\subset V$.
- Item (f)$\implies $Item (d): Suppose that the following condition is true:
- For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
We need to show that the condition - For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
is also true. We proceed step by step: - Suppose we have $U,V\in \mathcal{P}\webleft (A\webright )$ with $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$.
- By Chapter 7: Constructions With Relations, Item 7 of Proposition 7.4.1.1.3, we have
\begin{align*} R_{*}\webleft (U\webright ) & = B\setminus R_{!}\webleft (A\setminus U\webright ),\\ R_{*}\webleft (V\webright ) & = B\setminus R_{!}\webleft (A\setminus V\webright ). \end{align*}
- By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 we have $R_{!}\webleft (A\setminus V\webright )\subset R_{!}\webleft (A\setminus U\webright )$.
- By assumption, we then have $A\setminus V\subset A\setminus U$.
- By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 again, we have $U\subset V$.
- Item (b)$\implies $Item (d): Consider the diagram
and suppose that $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$. Note that, by assumption, given a diagram of the form
if $R_{*}\webleft (U\webright )=R\mathbin {\diamond }U\subset R\mathbin {\diamond }V=R_{*}\webleft (V\webright )$, then $U\subset V$. In particular, for each $x\in X$, we may consider the diagram
for which we have $R\mathbin {\diamond }S\mathbin {\diamond }\webleft [x\webright ]\subset R\mathbin {\diamond }T\mathbin {\diamond }\webleft [x\webright ]$, implying that we have
\[ S\webleft (x\webright )=S\mathbin {\diamond }\webleft [x\webright ]\subset T\mathbin {\diamond }\webleft [x\webright ]=T\webleft (x\webright ) \]
for each $x\in X$, implying $S\subset T$.
- Item (d)$\implies $Item (b): Let $U,V\in \mathcal{P}\webleft (A\webright )$ and consider the diagram
By , we have
\begin{align*} R_{*}\webleft (U\webright ) & = R\mathbin {\diamond }U,\\ R_{*}\webleft (V\webright ) & = R\mathbin {\diamond }V. \end{align*}
Now, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, i.e. $R\mathbin {\diamond }U\subset R\mathbin {\diamond }V$, then $U\subset V$ by assumption.
, Fully Faithful Monomorphisms in $\textbf{Rel}$: This follows from Item 1 and Item 2.
Item 2 of Proposition 6.3.8.1.1 gives a characterisation of the representably full morphisms in $\textbf{Rel}$.
Are there other nice characterisations of these?
This question also appears as [MO 467527
].