5.3.8 2-Categorical Monomorphisms in $\textbf{Rel}$

In this section we characterise (for now, some of) the $2$-categorical monomorphisms in $\textbf{Rel}$, following Chapter 9: Types of Morphisms in Bicategories, Section 9.1.

Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

  1. Representably Faithful Morphisms in $\textbf{Rel}$. Every morphism of $\textbf{Rel}$ is a representably faithful morphism.
  2. Representably Full Morphisms in $\textbf{Rel}$. The following conditions are equivalent:
    1. The morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is a representably full morphism.
    2. For each pair of relations $S,T\colon X\mathrel {\rightrightarrows \kern -9.5pt\mathrlap {|}\kern 6pt}A$, the following condition is satisfied:
      • If $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, then $S\subset T$.
    3. The functor
      \[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

      is full.

    4. For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
    5. The functor
      \[ R_{!}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

      is full.

    6. For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
  3. Representably Fully Faithful Morphisms in $\textbf{Rel}$. Every representaly full morphism in $\textbf{Rel}$ is a representably fully faithful morphism.

Item 1: Representably Faithful Morphisms in $\textbf{Rel}$
The relation $R$ is a representably faithful morphism in $\textbf{Rel}$ iff, for each $X\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the functor
\[ R_{*}\colon \mathbf{Rel}\webleft (X,A\webright )\to \mathbf{Rel}\webleft (X,B\webright ) \]

is faithful, i.e. iff the morphism

\[ R_{*|S,T}\colon \textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )\to \textup{Hom}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,R\mathbin {\diamond }T\webright ) \]

is injective for each $S,T\in \text{Obj}\webleft (\mathbf{Rel}\webleft (X,A\webright )\webright )$. However, $\textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )$ is either empty or a singleton, in either case of which the map $R_{*|S,T}$ is necessarily injective.

Item 2: Representably Full Morphisms in $\textbf{Rel}$
We claim Item (a), Item (b), Item (c), Item (d), Item (e), and Item (f) are indeed equivalent:
  • Item (a)$\iff $Item (b): This is simply a matter of unwinding definitions: The relation $R$ is a representably full morphism in $\textbf{Rel}$ iff, for each $X\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the functor
    \[ R_{*}\colon \mathbf{Rel}\webleft (X,A\webright )\to \mathbf{Rel}\webleft (X,B\webright ) \]

    is full, i.e. iff the morphism

    \[ R_{*|S,T}\colon \textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )\to \textup{Hom}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,R\mathbin {\diamond }T\webright ) \]

    is surjective for each $S,T\in \text{Obj}\webleft (\mathbf{Rel}\webleft (X,A\webright )\webright )$, i.e. iff, whenever $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, we also have $S\subset T$.

  • Item (c)$\iff $Item (d): This is also simply a matter of unwinding definitions: The functor

    \[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

    is full iff, for each $U,V\in \mathcal{P}\webleft (A\webright )$, the morphism

    \[ R_{*|U,V}\colon \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,V\webright )\to \textup{Hom}_{\mathcal{P}\webleft (B\webright )}\webleft (R_{*}\webleft (U\webright ),R_{*}\webleft (V\webright )\webright ) \]

    is surjective, i.e. iff whenever $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, we also necessarily have $U\subset V$.

  • Item (e)$\iff $Item (f): This is once again simply a matter of unwinding definitions, and proceeds exactly in the same way as in the proof of the equivalence between Item (c) and Item (d) given above.
  • Item (d)$\implies $Item (f): Suppose that the following condition is true:
    • For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
    We need to show that the condition
    • For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
    is also true. We proceed step by step:
    1. Suppose we have $U,V\in \mathcal{P}\webleft (A\webright )$ with $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$.
    2. By Chapter 6: Constructions With Relations, Item 7 of Proposition 6.4.4.1.3, we have

      \begin{align*} R_{!}\webleft (U\webright ) & = B\setminus R_{*}\webleft (A\setminus U\webright ),\\ R_{!}\webleft (V\webright ) & = B\setminus R_{*}\webleft (A\setminus V\webright ). \end{align*}

    3. By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 we have $R_{*}\webleft (A\setminus V\webright )\subset R_{*}\webleft (A\setminus U\webright )$.
    4. By assumption, we then have $A\setminus V\subset A\setminus U$.
    5. By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 again, we have $U\subset V$.
  • Item (f)$\implies $Item (d): Suppose that the following condition is true:
    • For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
    We need to show that the condition
    • For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
    is also true. We proceed step by step:
    1. Suppose we have $U,V\in \mathcal{P}\webleft (A\webright )$ with $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$.
    2. By Chapter 6: Constructions With Relations, Item 7 of Proposition 6.4.1.1.3, we have

      \begin{align*} R_{*}\webleft (U\webright ) & = B\setminus R_{!}\webleft (A\setminus U\webright ),\\ R_{*}\webleft (V\webright ) & = B\setminus R_{!}\webleft (A\setminus V\webright ). \end{align*}

    3. By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 we have $R_{!}\webleft (A\setminus V\webright )\subset R_{!}\webleft (A\setminus U\webright )$.
    4. By assumption, we then have $A\setminus V\subset A\setminus U$.
    5. By Chapter 2: Constructions With Sets, Item 1 of Proposition 2.3.10.1.2 again, we have $U\subset V$.
  • Item (b)$\implies $Item (d): Consider the diagram

    and suppose that $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$. Note that, by assumption, given a diagram of the form

    if $R_{*}\webleft (U\webright )=R\mathbin {\diamond }U\subset R\mathbin {\diamond }V=R_{*}\webleft (V\webright )$, then $U\subset V$. In particular, for each $x\in X$, we may consider the diagram

    for which we have $R\mathbin {\diamond }S\mathbin {\diamond }\webleft [x\webright ]\subset R\mathbin {\diamond }T\mathbin {\diamond }\webleft [x\webright ]$, implying that we have

    \[ S\webleft (x\webright )=S\mathbin {\diamond }\webleft [x\webright ]\subset T\mathbin {\diamond }\webleft [x\webright ]=T\webleft (x\webright ) \]

    for each $x\in X$, implying $S\subset T$.

  • Item (d)$\implies $Item (b): Let $U,V\in \mathcal{P}\webleft (A\webright )$ and consider the diagram

    By , we have

    \begin{align*} R_{*}\webleft (U\webright ) & = R\mathbin {\diamond }U,\\ R_{*}\webleft (V\webright ) & = R\mathbin {\diamond }V. \end{align*}

    Now, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, i.e. $R\mathbin {\diamond }U\subset R\mathbin {\diamond }V$, then $U\subset V$ by assumption.

, Fully Faithful Monomorphisms in $\textbf{Rel}$: This follows from Item 1 and Item 2.

Item 2 of Proposition 5.3.8.1.1 gives a characterisation of the representably full morphisms in $\textbf{Rel}$.

Are there other nice characterisations of these?

This question also appears as [MO 467527].


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: