Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

  1. Functoriality. The assignment $U\mapsto R_{*}\webleft (U\webright )$ defines a functor
    \[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $U\in \mathcal{P}\webleft (A\webright )$, we have

      \[ \webleft [R_{*}\webright ]\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{*}\webleft (U\webright ). \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (A\webright )$:
      • If $U\subset V$, then $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$.

  2. Adjointness. We have an adjunction
    witnessed by a bijections of sets
    \[ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (R_{*}\webleft (U\webright ),V\webright )\cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,R_{-1}\webleft (V\webright )\webright ), \]

    natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$, i.e. such that:

    • The following conditions are equivalent:
      • We have $R_{*}\webleft (U\webright )\subset V$.
      • We have $U\subset R_{-1}\webleft (V\webright )$.

  3. Preservation of Colimits. We have an equality of sets
    \[ R_{*}\webleft (\bigcup _{i\in I}U_{i}\webright )=\bigcup _{i\in I}R_{*}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} R_{*}\webleft (U\webright )\cup R_{*}\webleft (V\webright ) = R_{*}\webleft (U\cup V\webright ),\\ R_{*}\webleft (\emptyset \webright ) = \emptyset , \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  4. Oplax Preservation of Limits. We have an inclusion of sets
    \[ R_{*}\webleft (\bigcap _{i\in I}U_{i}\webright )\subset \bigcap _{i\in I}R_{*}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} R_{*}\webleft (U\cap V\webright ) \subset R_{*}\webleft (U\webright )\cap R_{*}\webleft (V\webright ),\\ R_{*}\webleft (A\webright ) \subset B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (R_{*},R^{\otimes }_{*},R^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\emptyset \webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\emptyset \webright ), \]

    being equipped with equalities

    \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{*}\webleft (U\webright )\cup R_{*}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}R_{*}\webleft (U\cup V\webright ),\\ R^{\otimes }_{*|\mathbb {1}} \colon \emptyset \mathbin {\overset {=}{\rightarrow }}\emptyset , \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure
    \[ \webleft (R_{*},R^{\otimes }_{*},R^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{*}\webleft (U\cap V\webright ) \subset R_{*}\webleft (U\webright )\cap R_{*}\webleft (V\webright ),\\ R^{\otimes }_{*|\mathbb {1}} \colon R_{*}\webleft (A\webright ) \subset B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  7. Relation to Direct Images With Compact Support. We have
    \[ R_{*}\webleft (U\webright )=B\setminus R_{!}\webleft (A\setminus U\webright ) \]

    for each $U\in \mathcal{P}\webleft (A\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness
This follows from of .
Item 3: Preservation of Colimits
This follows from Item 2 and of .
Item 4: Oplax Preservation of Limits
Omitted.
Item 5: Symmetric Strict Monoidality With Respect to Unions
This follows from Item 3.
Item 6: Symmetric Oplax Monoidality With Respect to Intersections
This follows from Item 4.
Item 7: Relation to Direct Images With Compact Support
The proof proceeds in the same way as in the case of functions (Chapter 2: Constructions With Sets, Item 9 of Proposition 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to $A\setminus U$, we have
\begin{align*} R_{!}\webleft (A\setminus U\webright ) & = B\setminus R_{*}\webleft (A\setminus \webleft (A\setminus U\webright )\webright )\\ & = B\setminus R_{*}\webleft (U\webright ). \end{align*}

Taking complements, we then obtain

\begin{align*} R_{*}\webleft (U\webright ) & = B\setminus \webleft (B\setminus R_{*}\webleft (U\webright )\webright ),\\ & = B\setminus R_{!}\webleft (A\setminus U\webright ), \end{align*}

which finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: