6.4.1 Direct Images

Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

The direct image function associated to $R$ is the function

\[ R_{*}\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

defined by[1][2]

\begin{align*} R_{*}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\webleft (U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}R\webleft (a\webright )\\ & = \webleft\{ b\in B\ \middle |\ \begin{aligned} & \text{there exists some $a\in U$}\\ & \text{such that $b\in R\webleft (a\webright )$} \end{aligned} \webright\} \end{align*}

for each $U\in \mathcal{P}\webleft (A\webright )$.

Identifying subsets of $A$ with relations from $\text{pt}$ to $A$ via Chapter 2: Constructions With Sets, Item 3 of Proposition 2.4.3.1.6, we see that the direct image function associated to $R$ is equivalently the function

\[ R_{*}\colon \underbrace{\mathcal{P}\webleft (A\webright )}_{\cong \mathrm{Rel}\webleft (\text{pt},A\webright )} \to \underbrace{\mathcal{P}\webleft (B\webright )}_{\cong \mathrm{Rel}\webleft (\text{pt},B\webright )} \]

defined by

\[ R_{*}\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\diamond }U \]

for each $U\in \mathcal{P}\webleft (A\webright )$, where $R\mathbin {\diamond }U$ is the composition

\[ \text{pt}\mathbin {\overset {U}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B. \]

Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

  1. Functoriality. The assignment $U\mapsto R_{*}\webleft (U\webright )$ defines a functor
    \[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $U\in \mathcal{P}\webleft (A\webright )$, we have

      \[ \webleft [R_{*}\webright ]\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{*}\webleft (U\webright ). \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (A\webright )$:
      • If $U\subset V$, then $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$.

  2. Adjointness. We have an adjunction
    witnessed by a bijections of sets
    \[ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (R_{*}\webleft (U\webright ),V\webright )\cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,R_{-1}\webleft (V\webright )\webright ), \]

    natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$, i.e. such that:

    • The following conditions are equivalent:
      • We have $R_{*}\webleft (U\webright )\subset V$.
      • We have $U\subset R_{-1}\webleft (V\webright )$.

  3. Preservation of Colimits. We have an equality of sets
    \[ R_{*}\webleft (\bigcup _{i\in I}U_{i}\webright )=\bigcup _{i\in I}R_{*}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} R_{*}\webleft (U\webright )\cup R_{*}\webleft (V\webright ) = R_{*}\webleft (U\cup V\webright ),\\ R_{*}\webleft (\emptyset \webright ) = \emptyset , \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  4. Oplax Preservation of Limits. We have an inclusion of sets
    \[ R_{*}\webleft (\bigcap _{i\in I}U_{i}\webright )\subset \bigcap _{i\in I}R_{*}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} R_{*}\webleft (U\cap V\webright ) \subset R_{*}\webleft (U\webright )\cap R_{*}\webleft (V\webright ),\\ R_{*}\webleft (A\webright ) \subset B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  5. Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (R_{*},R^{\otimes }_{*},R^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\emptyset \webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\emptyset \webright ), \]

    being equipped with equalities

    \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{*}\webleft (U\webright )\cup R_{*}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}R_{*}\webleft (U\cup V\webright ),\\ R^{\otimes }_{*|\mathbb {1}} \colon \emptyset \mathbin {\overset {=}{\rightarrow }}\emptyset , \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  6. Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure
    \[ \webleft (R_{*},R^{\otimes }_{*},R^{\otimes }_{*|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} R^{\otimes }_{*|U,V} \colon R_{*}\webleft (U\cap V\webright ) \subset R_{*}\webleft (U\webright )\cap R_{*}\webleft (V\webright ),\\ R^{\otimes }_{*|\mathbb {1}} \colon R_{*}\webleft (A\webright ) \subset B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  7. Relation to Direct Images With Compact Support. We have
    \[ R_{*}\webleft (U\webright )=B\setminus R_{!}\webleft (A\setminus U\webright ) \]

    for each $U\in \mathcal{P}\webleft (A\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness
This follows from of .
Item 3: Preservation of Colimits
This follows from Item 2 and of .
Item 4: Oplax Preservation of Limits
Omitted.
Item 5: Symmetric Strict Monoidality With Respect to Unions
This follows from Item 3.
Item 6: Symmetric Oplax Monoidality With Respect to Intersections
This follows from Item 4.
Item 7: Relation to Direct Images With Compact Support
The proof proceeds in the same way as in the case of functions (Chapter 2: Constructions With Sets, Item 9 of Proposition 2.4.4.1.4): applying Item 7 of Proposition 6.4.4.1.3 to $A\setminus U$, we have
\begin{align*} R_{!}\webleft (A\setminus U\webright ) & = B\setminus R_{*}\webleft (A\setminus \webleft (A\setminus U\webright )\webright )\\ & = B\setminus R_{*}\webleft (U\webright ). \end{align*}

Taking complements, we then obtain

\begin{align*} R_{*}\webleft (U\webright ) & = B\setminus \webleft (B\setminus R_{*}\webleft (U\webright )\webright ),\\ & = B\setminus R_{!}\webleft (A\setminus U\webright ), \end{align*}

which finishes the proof.

Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

  1. Functionality I. The assignment $R\mapsto R_{*}$ defines a function
    \[ \webleft (-\webright )_{*}\colon \mathrm{Rel}\webleft (A,B\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ). \]
  2. Functionality II. The assignment $R\mapsto R_{*}$ defines a function
    \[ \webleft (-\webright )_{*}\colon \mathrm{Rel}\webleft (A,B\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\webright ). \]
  3. Interaction With Identities. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have[3]
    \[ \webleft (\chi _{A}\webright )_{*}=\text{id}_{\mathcal{P}\webleft (A\webright )}. \]
  4. Interaction With Composition. For each pair of composable relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, we have[4]

Item 1: Functionality I
Clear.
Item 2: Functionality II
Clear.
Item 3: Interaction With Identities
Indeed, we have
\begin{align*} \webleft (\chi _{A}\webright )_{*}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}\chi _{A}\webleft (a\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}\webleft\{ a\webright\} \\ & = U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{\mathcal{P}\webleft (A\webright )}\webleft (U\webright ) \end{align*}

for each $U\in \mathcal{P}\webleft (A\webright )$. Thus $\webleft (\chi _{A}\webright )_{*}=\text{id}_{\mathcal{P}\webleft (A\webright )}$.

Item 4: Interaction With Composition
Indeed, we have
\begin{align*} \webleft (S\mathbin {\diamond }R\webright )_{*}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}\webleft [S\mathbin {\diamond }R\webright ]\webleft (a\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}S\webleft (R\webleft (a\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{a\in U}S_{*}\webleft (R\webleft (a\webright )\webright )\\ & = S_{*}\webleft (\bigcup _{a\in U}R\webleft (a\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S_{*}\webleft (R_{*}\webleft (U\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [S_{*}\circ R_{*}\webright ]\webleft (U\webright ) \end{align*}

for each $U\in \mathcal{P}\webleft (A\webright )$, where we used Item 3 of Proposition 6.4.1.1.3. Thus $\webleft (S\mathbin {\diamond }R\webright )_{*}=S_{*}\circ R_{*}$.


Footnotes

[1] Further Terminology: The set $R\webleft (U\webright )$ is called the direct image of $U$ by $R$.
[2] We also have
\[ R_{*}\webleft (U\webright )=B\setminus R_{!}\webleft (A\setminus U\webright ); \]
see Item 7 of Proposition 6.4.1.1.3.
[3] That is, the postcomposition function
\[ \webleft (\chi _{A}\webright )_{*}\colon \mathrm{Rel}\webleft (\text{pt},A\webright )\to \mathrm{Rel}\webleft (\text{pt},A\webright ) \]
is equal to $\text{id}_{\mathrm{Rel}\webleft (\text{pt},A\webright )}$.
[4] That is, we have

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: