6.2.5 The Double Category of Relations
6.2.5.1 The Double Category of Relations
The double category of relations is the locally posetal double category $\smash {\mathsf{Rel}^{\mathsf{dbl}}}$ where
- Objects. The objects of $\mathsf{Rel}^{\mathsf{dbl}}$ are sets.
- Vertical Morphisms. The vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are maps of sets $f\colon A\to B$.
- Horizontal Morphisms. The horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X$.
- $2$-Morphisms. A $2$-cell
of $\mathsf{Rel}^{\mathsf{dbl}}$ is either non-existent or an inclusion of relations of the form
- Horizontal Identities. The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 6.2.5.2.1.
- Vertical Identities. For each $A\in \text{Obj}\webleft (\mathsf{Rel}^{\mathsf{dbl}}\webright )$, we have
\[ \text{id}^{\mathsf{Rel}^{\mathsf{dbl}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{A}. \]
- Identity $2$-Morphisms. For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the identity $2$-morphism
of $R$ is the identity inclusion
- Horizontal Composition. The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 6.2.5.3.1.
- Vertical Composition of $1$-Morphisms. For each composable pair $A\smash {\overset {F}{\to }}B\smash {\overset {G}{\to }}C$ of vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. maps of sets, we have
\[ g\mathbin {{\circ }^{\mathsf{Rel}^{\mathsf{dbl}}}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]
- Vertical Composition of $2$-Morphisms. The vertical composition of $2$-morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.4.1.
- Associators. The associators of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.5.1.
- Left Unitors. The left unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.6.1.
- Right Unitors. The right unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.7.1.
6.2.5.2 Horizontal Identities
The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor
\[ \mathbb {1}^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{0} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]
of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where
6.2.5.3 Horizontal Composition
The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor
\[ \mathbin {\odot }^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{1}\operatorname*{\mathbin {\times }}_{\mathsf{Rel}^{\mathsf{dbl}}_{0}}\mathsf{Rel}^{\mathsf{dbl}}_{1} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]
of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where
- Action on Objects. For each composable pair $\smash {A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C}$ of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, we have
\[ S\mathbin {\odot }R\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R, \]
where $S\mathbin {\diamond }R$ is the composition of $R$ and $S$ of Chapter 7: Constructions With Relations, Definition 7.3.12.1.1.
- Action on Morphisms. For each horizontally composable pair of $2$-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each pair of inclusions of relations, the horizontal composition
of $\alpha $ and $\beta $ is the inclusion of relations1
6.2.5.4 Vertical Composition of 2-Morphisms
The vertical composition in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as follows: for each vertically composable pair
of $2$-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each each pair of inclusions of relations, we define the vertical composition
of $\alpha $ and $\beta $ as the inclusion of relations
given by the pasting of inclusions1
6.2.5.5 The Associators
For each composable triple
\[ A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C\mathbin {\overset {T}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}D \]
of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, the component
of the associator of $\mathsf{Rel}^{\mathsf{dbl}}$ at $\webleft (R,S,T\webright )$ is the identity inclusion1
6.2.5.6 The Left Unitors
For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the component
of the left unitor of $\mathsf{Rel}^{\mathsf{dbl}}$ at $R$ is the identity inclusion1
6.2.5.7 The Right Unitors
For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the component
of the right unitor of $\mathsf{Rel}^{\mathsf{dbl}}$ at $R$ is the identity inclusion1