6.2.5 The Double Category of Relations

6.2.5.1 The Double Category of Relations

The double category of relations is the locally posetal double category $\smash {\mathsf{Rel}^{\mathsf{dbl}}}$ where

  • Objects. The objects of $\mathsf{Rel}^{\mathsf{dbl}}$ are sets.
  • Vertical Morphisms. The vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are maps of sets $f\colon A\to B$.
  • Horizontal Morphisms. The horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$ are relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}X$.
  • $2$-Morphisms. A $2$-cell

    of $\mathsf{Rel}^{\mathsf{dbl}}$ is either non-existent or an inclusion of relations of the form

  • Horizontal Identities. The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 6.2.5.2.1.
  • Vertical Identities. For each $A\in \text{Obj}\webleft (\mathsf{Rel}^{\mathsf{dbl}}\webright )$, we have

    \[ \text{id}^{\mathsf{Rel}^{\mathsf{dbl}}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{A}. \]

  • Identity $2$-Morphisms. For each horizontal morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, the identity $2$-morphism

    of $R$ is the identity inclusion

  • Horizontal Composition. The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor of Definition 6.2.5.3.1.
  • Vertical Composition of $1$-Morphisms. For each composable pair $A\smash {\overset {F}{\to }}B\smash {\overset {G}{\to }}C$ of vertical morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. maps of sets, we have

    \[ g\mathbin {{\circ }^{\mathsf{Rel}^{\mathsf{dbl}}}}f \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g\circ f. \]

  • Vertical Composition of $2$-Morphisms. The vertical composition of $2$-morphisms in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.4.1.
  • Associators. The associators of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.5.1.
  • Left Unitors. The left unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.6.1.
  • Right Unitors. The right unitors of $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as in Definition 6.2.5.7.1.

6.2.5.2 Horizontal Identities

The horizontal unit functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor

\[ \mathbb {1}^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{0} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]

of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where

  • Action on Objects. For each $A\in \text{Obj}\webleft (\mathsf{Rel}^{\mathsf{dbl}}_{0}\webright )$, we have

    \[ \mathbb {1}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{A}\webleft (-_{1},-_{2}\webright ). \]

  • Action on Morphisms. For each vertical morphism $f\colon A\to B$ of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. each map of sets $f$ from $A$ to $B$, the identity $2$-morphism

    of $f$ is the inclusion

    of Chapter 2: Constructions With Sets, of .

6.2.5.3 Horizontal Composition

The horizontal composition functor of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor

\[ \mathbin {\odot }^{\mathsf{Rel}^{\mathsf{dbl}}} \colon \mathsf{Rel}^{\mathsf{dbl}}_{1}\operatorname*{\mathbin {\times }}_{\mathsf{Rel}^{\mathsf{dbl}}_{0}}\mathsf{Rel}^{\mathsf{dbl}}_{1} \to \mathsf{Rel}^{\mathsf{dbl}}_{1} \]

of $\mathsf{Rel}^{\mathsf{dbl}}$ is the functor where

  • Action on Objects. For each composable pair $\smash {A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C}$ of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, we have

    \[ S\mathbin {\odot }R\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R, \]

    where $S\mathbin {\diamond }R$ is the composition of $R$ and $S$ of Chapter 7: Constructions With Relations, Definition 7.3.12.1.1.

  • Action on Morphisms. For each horizontally composable pair
    of $2$-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each pair
    of inclusions of relations, the horizontal composition

    of $\alpha $ and $\beta $ is the inclusion of relations1


1This is justified by noting that, given $\webleft (a,c\webright )\in A\times C$, the statement
  • We have $a\sim _{\webleft (U\mathbin {\diamond }T\webright )\circ \webleft (f\times h\webright )}c$, i.e. $f\webleft (a\webright )\sim _{U\mathbin {\diamond }T}h\webleft (c\webright )$, i.e. there exists some $y\in Y$ such that:
    1. We have $f\webleft (a\webright )\sim _{T}y$;
    2. We have $y\sim _{U}h\webleft (c\webright )$;
is implied by the statement
  • We have $a\sim _{S\mathbin {\diamond }R}c$, i.e. there exists some $b\in B$ such that:
    1. We have $a\sim _{R}b$;
    2. We have $b\sim _{S}c$;
since:
  • If $a\sim _{R}b$, then $f\webleft (a\webright )\sim _{T}g\webleft (b\webright )$, as $T\circ \webleft (f\times g\webright )\subset R$;
  • If $b\sim _{S}c$, then $g\webleft (b\webright )\sim _{U}h\webleft (c\webright )$, as $U\circ \webleft (g\times h\webright )\subset S$.

6.2.5.4 Vertical Composition of 2-Morphisms

The vertical composition in $\mathsf{Rel}^{\mathsf{dbl}}$ is defined as follows: for each vertically composable pair

of $2$-morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, i.e. for each each pair
of inclusions of relations, we define the vertical composition

of $\alpha $ and $\beta $ as the inclusion of relations

given by the pasting of inclusions1


1This is justified by noting that, given $\webleft (a,x\webright )\in A\times X$, the statement
  • We have $h\webleft (f\webleft (a\webright )\webright )\sim _{T}k\webleft (g\webleft (x\webright )\webright )$;
is implied by the statement
  • We have $a\sim _{R}x$;
since
  • If $a\sim _{R}x$, then $f\webleft (a\webright )\sim _{S}g\webleft (x\webright )$, as $S\circ \webleft (f\times g\webright )\subset R$;
  • If $b\sim _{S}y$, then $h\webleft (b\webright )\sim _{T}k\webleft (y\webright )$, as $T\circ \webleft (h\times k\webright )\subset S$, and thus, in particular:
    • If $f\webleft (a\webright )\sim _{S}g\webleft (x\webright )$, then $h\webleft (f\webleft (a\webright )\webright )\sim _{T}k\webleft (g\webleft (x\webright )\webright )$.

6.2.5.5 The Associators

For each composable triple

\[ A\mathbin {\overset {R}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}B\mathbin {\overset {S}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}C\mathbin {\overset {T}{\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}}}D \]

of horizontal morphisms of $\mathsf{Rel}^{\mathsf{dbl}}$, the component

of the associator of $\mathsf{Rel}^{\mathsf{dbl}}$ at $\webleft (R,S,T\webright )$ is the identity inclusion1

6.2.5.6 The Left Unitors

6.2.5.7 The Right Unitors


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: