Let $A,B,C\in \text{Obj}\webleft (\mathsf{Rel}\webright )$.

  1. Adjointness. We have adjunctions
    witnessed by bijections
    \begin{align*} \mathrm{Rel}\webleft (A\times B,C\webright ) & \cong \mathrm{Rel}\webleft (A,\mathrm{Rel}\webleft (B,C\webright )\webright ),\\ \mathrm{Rel}\webleft (A\times B,C\webright ) & \cong \mathrm{Rel}\webleft (B,\mathrm{Rel}\webleft (A,C\webright )\webright ), \end{align*}

    natural in $A,B,C\in \text{Obj}\webleft (\mathsf{Rel}\webright )$.

Item 1: Adjointness
Indeed, we have
\begin{align*} \mathrm{Rel}\webleft (A\times B,C\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Sets}\webleft (A\times B\times C,\{ \mathsf{true},\mathsf{false}\} \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{Rel}\webleft (A,B\times C\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{Rel}\webleft (A,\mathrm{Rel}\webleft (B,C\webright )\webright ), \end{align*}

and similarly for the bijection $\mathrm{Rel}\webleft (A\times B,C\webright )\cong \mathrm{Rel}\webleft (B,\mathrm{Rel}\webleft (A,C\webright )\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: