5.2.2 The Closed Symmetric Monoidal Category of Relations

5.2.2.1 The Monoidal Product

The monoidal product of $\mathsf{Rel}$ is the functor

\[ \times \colon \mathsf{Rel}\times \mathsf{Rel}\to \mathsf{Rel} \]

where

  • Action on Objects. For each $A,B\in \text{Obj}\webleft (\mathsf{Rel}\webright )$, we have

    \[ \mathord {\times }\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B, \]

    where $A\times B$ is the Cartesian product of sets of Chapter 2: Constructions With Sets, Definition 2.1.3.1.1.

  • Action on Morphisms. For each $\webleft (A,C\webright ),\webleft (B,D\webright )\in \text{Obj}\webleft (\mathsf{Rel}\times \mathsf{Rel}\webright )$, the action on morphisms

    \[ \times _{\webleft (A,C\webright ),\webleft (B,D\webright )}\colon \mathrm{Rel}\webleft (A,B\webright )\times \mathrm{Rel}\webleft (C,D\webright )\to \mathrm{Rel}\webleft (A\times C,B\times D\webright ) \]

    of $\times $ is given by sending a pair of morphisms $\webleft (R,S\webright )$ of the form

    \begin{align*} R & \colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B,\\ S & \colon C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}D \end{align*}

    to the relation

    \[ R\times S\colon A\times C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B\times D \]

    of Chapter 6: Constructions With Relations, Definition 6.3.9.1.1.

5.2.2.2 The Monoidal Unit

The monoidal unit of $\mathsf{Rel}$ is the functor

\[ \mathbb {1}^{\mathsf{Rel}}\colon \text{pt}\to \mathsf{Rel} \]

picking the set

\[ \mathbb {1}_{\mathsf{Rel}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{pt} \]

of $\mathsf{Rel}$.

5.2.2.3 The Associator

The associator of $\mathsf{Rel}$ is the natural isomorphism

\[ \alpha ^{\mathsf{Rel}}\colon {\times }\circ {\webleft ({\webleft (\times \webright )}\times {\mathsf{id}}\webright )}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\times }\circ {\webleft ({\mathsf{id}}\times {\webleft (\times \webright )}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathsf{Rel},\mathsf{Rel},\mathsf{Rel}}}\mathrlap {,} \]

as in the diagram

whose component

\[ \alpha ^{\mathsf{Rel}}_{A,B,C}\colon \webleft (A\times B\webright )\times C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A\times \webleft (B\times C\webright ) \]

at $A,B,C\in \text{Obj}\webleft (\mathsf{Rel}\webright )$ is the relation defined by declaring

\[ \webleft (\webleft (a,b\webright ),c\webright ) \sim _{\alpha ^{\mathsf{Rel}}_{A,B,C}} \webleft (a',\webleft (b',c'\webright )\webright ) \]

iff $a=a'$, $b=b'$, and $c=c'$.

5.2.2.4 The Left Unitor

The left unitor of $\mathsf{Rel}$ is the natural isomorphism

whose component

\[ \lambda ^{\mathsf{Rel}}_{A} \colon \mathbb {1}_{\mathsf{Rel}}\times A \mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A \]

at $A$ is defined by declaring

\[ \webleft (\star ,a\webright ) \sim _{\lambda ^{\mathsf{Rel}}_{A}} b \]

iff $a=b$.

5.2.2.5 The Right Unitor

The right unitor of $\mathsf{Rel}$ is the natural isomorphism

whose component

\[ \rho ^{\mathsf{Rel}}_{A} \colon A\times \mathbb {1}_{\mathsf{Rel}} \mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A \]

at $A$ is defined by declaring

\[ \webleft (a,\star \webright ) \sim _{\rho ^{\mathsf{Rel}}_{A}} b \]

iff $a=b$.

5.2.2.6 The Symmetry

The symmetry of $\mathsf{Rel}$ is the natural isomorphism

whose component

\[ \sigma ^{\mathsf{Rel}}_{A,B} \colon A\times B \to B\times A \]

at $\webleft (A,B\webright )$ is defined by declaring

\[ \webleft (a,b\webright ) \sim _{\sigma ^{\mathsf{Rel}}_{A,B}} \webleft (b',a'\webright ) \]

iff $a=a'$ and $b=b'$.

5.2.2.7 The Internal Hom

Let $A,B,C\in \text{Obj}\webleft (\mathsf{Rel}\webright )$.

  1. Adjointness. We have adjunctions
    witnessed by bijections
    \begin{align*} \mathrm{Rel}\webleft (A\times B,C\webright ) & \cong \mathrm{Rel}\webleft (A,\mathrm{Rel}\webleft (B,C\webright )\webright ),\\ \mathrm{Rel}\webleft (A\times B,C\webright ) & \cong \mathrm{Rel}\webleft (B,\mathrm{Rel}\webleft (A,C\webright )\webright ), \end{align*}

    natural in $A,B,C\in \text{Obj}\webleft (\mathsf{Rel}\webright )$.

Item 1: Adjointness
Indeed, we have
\begin{align*} \mathrm{Rel}\webleft (A\times B,C\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Sets}\webleft (A\times B\times C,\{ \mathsf{true},\mathsf{false}\} \webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{Rel}\webleft (A,B\times C\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{Rel}\webleft (A,\mathrm{Rel}\webleft (B,C\webright )\webright ), \end{align*}

and similarly for the bijection $\mathrm{Rel}\webleft (A\times B,C\webright )\cong \mathrm{Rel}\webleft (B,\mathrm{Rel}\webleft (A,C\webright )\webright )$.

5.2.2.8 The Closed Symmetric Monoidal Category of Relations

The category $\mathsf{Rel}$ admits a closed symmetric monoidal category structure consisting of[1]

  • The Underlying Category. The category $\mathsf{Rel}$ of sets and relations of Definition 5.2.1.1.1.
  • The Monoidal Product. The functor

    \[ \times \colon \mathrm{Rel}\times \mathrm{Rel}\to \mathrm{Rel} \]

    of Definition 5.2.2.1.1.

  • The Internal Hom. The internal Hom functor

    \[ \mathbf{Rel}\colon \mathrm{Rel}^{\mathsf{op}}\times \mathrm{Rel}\to \mathrm{Rel} \]

    of Definition 5.2.2.7.1.

  • The Monoidal Unit. The functor

    \[ \mathbb {1}^{\mathrm{Rel}} \colon \mathsf{pt}\to \mathrm{Rel} \]

    of Definition 5.2.2.2.1.

  • The Associators. The natural isomorphism

    \[ \alpha ^{\mathrm{Rel}} \colon {\times }\circ {\webleft ({\times }\times \text{id}_{\mathrm{Rel}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\times }\circ {\webleft (\text{id}_{\mathrm{Rel}}\times {\times }\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathrm{Rel},\mathrm{Rel},\mathrm{Rel}}} \]

    of Definition 5.2.2.3.1.

  • The Left Unitors. The natural isomorphism

    \[ \lambda ^{\mathrm{Rel}}\colon {\times }\circ {\webleft (\mathbb {1}^{\mathrm{Rel}}\times \text{id}_{\mathrm{Rel}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathrm{Rel}} \]

    of Definition 5.2.2.4.1.

  • The Right Unitors. The natural isomorphism

    \[ \rho ^{\mathrm{Rel}}\colon {\times }\circ {\webleft ({\mathsf{id}}\times {\mathbb {1}^{\mathrm{Rel}}}\webright )}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathrm{Rel}} \]

    of Definition 5.2.2.5.1.

  • The Symmetry. The natural isomorphism

    \[ \sigma ^{\mathrm{Rel}} \colon {\times } \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\times }\circ {\mathbf{\sigma }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathrm{Rel},\mathrm{Rel}}} \]

    of Definition 5.2.2.6.1.

Omitted.


Footnotes

[1] Dangerous Bend SymbolWarning: This is not a Cartesian monoidal structure, as the product on $\mathsf{Rel}$ is in fact given by the disjoint union of sets; see Chapter 6: Constructions With Relations, .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: