The monoidal product of $\mathsf{Rel}$ is the functor

\[ \times \colon \mathsf{Rel}\times \mathsf{Rel}\to \mathsf{Rel} \]

where

  • Action on Objects. For each $A,B\in \text{Obj}\webleft (\mathsf{Rel}\webright )$, we have

    \[ \mathord {\times }\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B, \]

    where $A\times B$ is the Cartesian product of sets of Chapter 2: Constructions With Sets, .

  • Action on Morphisms. For each $\webleft (A,C\webright ),\webleft (B,D\webright )\in \text{Obj}\webleft (\mathsf{Rel}\times \mathsf{Rel}\webright )$, the action on morphisms

    \[ \times _{\webleft (A,C\webright ),\webleft (B,D\webright )}\colon \mathrm{Rel}\webleft (A,B\webright )\times \mathrm{Rel}\webleft (C,D\webright )\to \mathrm{Rel}\webleft (A\times C,B\times D\webright ) \]

    of $\times $ is given by sending a pair of morphisms $\webleft (R,S\webright )$ of the form

    \begin{align*} R & \colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B,\\ S & \colon C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}D \end{align*}

    to the relation

    \[ R\times S\colon A\times C\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B\times D \]

    of Chapter 7: Constructions With Relations, Definition 7.3.9.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: