6.4.6 The Left Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$

The category $\mathbf{Rel}\webleft (A,B\webright )$ admits a left skew monoidal category structure consisting of

  • The Underlying Category. The posetal category associated to the poset $\mathbf{Rel}\webleft (A,B\webright )$ of relations from $A$ to $B$ of of .
  • The Left Skew Monoidal Product. The left $J$-skew monoidal product

    \[ \lhd _{J}\colon \mathbf{Rel}\webleft (A,B\webright )\times \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (A,B\webright ) \]

    of Definition 6.4.1.1.1.

  • The Left Skew Monoidal Unit. The functor

    \[ \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon \mathsf{pt}\to \mathbf{Rel}\webleft (A,B\webright ) \]

    of Definition 6.4.2.1.1.

  • The Left Skew Associators. The natural transformation

    \[ \alpha ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}}\colon {\lhd _{J}}\circ {\webleft ({\lhd _{J}}\times \mathsf{id}\webright )}\Longrightarrow {\lhd _{J}}\circ {\webleft (\mathsf{id}\times {\lhd _{J}}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright )}} \]

    of Definition 6.4.3.1.1.
  • The Left Skew Left Unitors. The natural transformation

    \[ \lambda ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon {\lhd _{J}}\circ {\webleft ({\mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\lhd _{J}}}\times {\mathsf{id}}\webright )} \Longrightarrow \mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \]

    of Definition 6.4.4.1.1.

  • The Left Skew Right Unitors. The natural transformation

    \[ \rho ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon \mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \Longrightarrow {\lhd _{J}}\circ {\webleft (\mathsf{id}\times \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\lhd _{J}}\webright )} \]

    of Definition 6.4.5.1.1.

Since $\mathbf{Rel}\webleft (A,B\webright )$ is posetal, the commutativity of the pentagon identity, the left skew left triangle identity, the left skew right triangle identity, the left skew middle triangle identity, and the zigzag identity is automatic, and thus $\mathbf{Rel}\webleft (A,B\webright )$ together with the data in the statement forms a left skew monoidal category.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: