The category $\mathbf{Rel}\webleft (A,B\webright )$ admits a left skew monoidal category structure consisting of
- The Underlying Category. The posetal category associated to the poset $\mathbf{Rel}\webleft (A,B\webright )$ of relations from $A$ to $B$ of of .
- The Left Skew Monoidal Product. The left $J$-skew monoidal product
\[ \lhd _{J}\colon \mathbf{Rel}\webleft (A,B\webright )\times \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (A,B\webright ) \]
- The Left Skew Monoidal Unit. The functor
\[ \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon \mathsf{pt}\to \mathbf{Rel}\webleft (A,B\webright ) \]
- The Left Skew Associators. The natural transformation \[ \alpha ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}}\colon {\lhd _{J}}\circ {\webleft ({\lhd _{J}}\times \mathsf{id}\webright )}\Longrightarrow {\lhd _{J}}\circ {\webleft (\mathsf{id}\times {\lhd _{J}}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright )}} \]
- The Left Skew Left Unitors. The natural transformation
\[ \lambda ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon {\lhd _{J}}\circ {\webleft ({\mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\lhd _{J}}}\times {\mathsf{id}}\webright )} \Longrightarrow \mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \]
- The Left Skew Right Unitors. The natural transformation
\[ \rho ^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon \mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \Longrightarrow {\lhd _{J}}\circ {\webleft (\mathsf{id}\times \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\lhd _{J}}\webright )} \]