The right $J$-skew monoidal product of $\mathbf{Rel}\webleft (A,B\webright )$ is the functor
\[ \rhd _{J}\colon \mathbf{Rel}\webleft (A,B\webright )\times \mathbf{Rel}\webleft (A,B\webright ) \to \mathbf{Rel}\webleft (A,B\webright ) \]
where
- Action on Objects. For each $R,S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$, we have
- Action on Morphisms. For each $R,S,R',S'\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$, the action on $\textup{Hom}$-sets \[ \webleft (\rhd _{J}\webright )_{\webleft (S,R\webright ),\webleft (S',R'\webright )} \colon \textup{Hom}_{\mathbf{Rel}\webleft (A,B\webright )}\webleft (S,S'\webright )\times \textup{Hom}_{\mathbf{Rel}\webleft (A,B\webright )}\webleft (R,R'\webright ) \to \textup{Hom}_{\mathbf{Rel}\webleft (A,B\webright )}\webleft (S\rhd _{J}R,S'\rhd _{J}R'\webright ) \]
1Since $\mathbf{Rel}\webleft (A,B\webright )$ is posetal, this is to say that if $S\subset S'$ and $R\subset R'$, then $S\rhd _{J}R\subset S'\rhd _{J}R'$.