The notion of a relation is a decategorification of that of a profunctor:
-
A profunctor from a category $\mathcal{C}$ to a category $\mathcal{D}$ is a functor
\[ \mathfrak {p}\colon \mathcal{D}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}. \]
-
A relation on sets $A$ and $B$ is a function
\[ R\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} . \]
Here we notice that:
- The opposite $X^{\mathsf{op}}$ of a set $X$ is itself, as $\webleft (-\webright )^{\mathsf{op}}\colon \mathsf{Cats}\to \mathsf{Cats}$ restricts to the identity endofunctor on $\mathsf{Sets}$.
- The values that profunctors and relations take are analogous:
- A category is enriched over the category
\[ \mathsf{Sets}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{0} \]
of sets, with profunctors taking values on it.
- A set is enriched over the set
\[ \{ \mathsf{true},\mathsf{false}\} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{-1} \]
of classical truth values, with relations taking values on it.
- A category is enriched over the category