The notion of a relation is a decategorification of that of a profunctor:

  1. A profunctor from a category $\mathcal{C}$ to a category $\mathcal{D}$ is a functor
    \[ \mathfrak {p}\colon \mathcal{D}^{\mathsf{op}}\times \mathcal{C}\to \mathsf{Sets}. \]
  2. A relation on sets $A$ and $B$ is a function
    \[ R\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} . \]

Here we notice that:

  • The opposite $X^{\mathsf{op}}$ of a set $X$ is itself, as $\webleft (-\webright )^{\mathsf{op}}\colon \mathsf{Cats}\to \mathsf{Cats}$ restricts to the identity endofunctor on $\mathsf{Sets}$.
  • The values that profunctors and relations take are analogous:
    • A category is enriched over the category

      \[ \mathsf{Sets}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{0} \]

      of sets, with profunctors taking values on it.

    • A set is enriched over the set

      \[ \{ \mathsf{true},\mathsf{false}\} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{-1} \]

      of classical truth values, with relations taking values on it.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: