6.1.3 Examples of Relations

The trivial relation on $A$ and $B$ is the relation $\mathord {\sim }_{\mathrm{triv}}$ defined equivalently as follows:

  1. As a subset of $A\times B$, we have
    \[ \mathord {\sim }_{\mathrm{triv}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B. \]
  2. As a function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $, the relation $\mathord {\sim }_{\mathrm{triv}}$ is the constant function
    \[ \Delta _{\mathsf{true}}\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} \]

    from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $ taking the value $\mathsf{true}$.

  3. As a function from $A$ to $\mathcal{P}\webleft (B\webright )$, the relation $\mathord {\sim }_{\mathrm{triv}}$ is the function
    \[ \Delta _{\mathsf{true}}\colon A\to \mathcal{P}\webleft (B\webright ) \]

    defined by

    \[ \Delta _{\mathsf{true}}\webleft (a\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B \]

    for each $a\in A$.

  4. Lastly, it is the unique relation $R$ on $A$ and $B$ such that we have $a\sim _{R}b$ for each $a\in A$ and each $b\in B$.

The cotrivial relation on $A$ and $B$ is the relation $\mathord {\sim }_{\mathrm{cotriv}}$ defined equivalently as follows:

  1. As a subset of $A\times B$, we have
    \[ \mathord {\sim }_{\mathrm{cotriv}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}. \]
  2. As a function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $, the relation $\mathord {\sim }_{\mathrm{cotriv}}$ is the constant function
    \[ \Delta _{\mathsf{false}}\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} \]

    from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $ taking the value $\mathsf{false}$.

  3. As a function from $A$ to $\mathcal{P}\webleft (B\webright )$, the relation $\mathord {\sim }_{\mathrm{cotriv}}$ is the function
    \[ \Delta _{\mathsf{false}}\colon A\to \mathcal{P}\webleft (B\webright ) \]

    defined by

    \[ \Delta _{\mathsf{false}}\webleft (a\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø} \]

    for each $a\in A$.

  4. Lastly, it is the unique relation $R$ on $A$ and $B$ such that we have $a\nsim _{R}b$ for each $a\in A$ and each $b\in B$.

The characteristic relation

\[ \chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} \]

on $X$ of Chapter 2: Constructions With Sets, of , defined by

\[ \chi _{X}\webleft (x,y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]

for each $x,y\in X$, is another example of a relation.

Square roots are examples of relations:

  1. Square Roots in $\mathbb {R}$. The assignment $x\mapsto \sqrt{x}$ defines a relation
    \[ \sqrt{-}\colon \mathbb {R}\to \mathcal{P}\webleft (\mathbb {R}\webright ) \]

    from $\mathbb {R}$ to itself, being explicitly given by

    \[ \sqrt{x}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} 0 & \text{if $x=0$,}\\ \webleft\{ -\sqrt{\left\lvert x\right\rvert },\sqrt{\left\lvert x\right\rvert }\webright\} & \text{if $x\neq 0$.} \end{cases} \]
  2. Square Roots in $\mathbb {Q}$. Square roots in $\mathbb {Q}$ are similar to square roots in $\mathbb {R}$, though now additionally it may also occur that $\sqrt{-}\colon \mathbb {Q}\to \mathcal{P}\webleft (\mathbb {Q}\webright )$ sends a rational number $x$ (e.g. $2$) to the empty set (since $\sqrt{2}\not\in \mathbb {Q}$).

The complex logarithm defines a relation

\[ \log \colon \mathbb {C}\to \mathcal{P}\webleft (\mathbb {C}\webright ) \]

from $\mathbb {C}$ to itself, where we have

\[ \log \webleft (a+bi\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \log \webleft (\sqrt{a^{2}+b^{2}}\webright )+i\arg \webleft (a+bi\webright )+\webleft (2\pi i\webright )k\ \middle |\ k\in \mathbb {Z}\webright\} \]

for each $a+bi\in \mathbb {C}$.

See [Wikipedia, Multivalued Function] for more examples of relations, such as antiderivation, inverse trigonometric functions, and inverse hyperbolic functions.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: