The $2$-category of relations is the locally posetal $2$-category $\textbf{Rel}$ where

  • Objects. The objects of $\textbf{Rel}$ are sets.
  • $\mathbf{Hom}$-Objects. For each $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have

    \begin{align*} \textup{Hom}_{\textbf{Rel}}\webleft (A,B\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathbf{Rel}\webleft (A,B\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\mathrm{Rel}\webleft (A,B\webright ),\subset \webright ).\end{align*}

  • Identities. For each $A\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the unit map

    \[ \mathbb {1}^{\textbf{Rel}}_{A} \colon \text{pt}\to \mathbf{Rel}\webleft (A,A\webright ) \]

    of $\textbf{Rel}$ at $A$ is defined by

    \[ \text{id}^{\textbf{Rel}}_{A} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{A}\webleft (-_{1},-_{2}\webright ), \]

    where $\chi _{A}\webleft (-_{1},-_{2}\webright )$ is the characteristic relation of $A$ ofChapter 2: Constructions With Sets, of .

  • Composition. For each $A,B,C\in \text{Obj}\webleft (\textbf{Rel}\webright )$, the composition map1
    \[ \circ ^{\textbf{Rel}}_{A,B,C}\colon \mathbf{Rel}\webleft (B,C\webright )\times \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (A,C\webright ) \]

    of $\textbf{Rel}$ at $\webleft (A,B,C\webright )$ is defined by

    \[ S\mathbin {{\circ }^{\textbf{Rel}}_{A,B,C}}R \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}S\mathbin {\diamond }R \]

    for each $\webleft (S,R\webright )\in \textbf{Rel}\webleft (B,C\webright )\times \textbf{Rel}\webleft (A,B\webright )$, where $S\mathbin {\diamond }R$ is the composition of $S$ and $R$ of Chapter 7: Constructions With Relations, Definition 7.3.12.1.1.


1Note that this is indeed a morphism of posets: given relations $R_{1},R_{2}\in \mathbf{Rel}\webleft (A,B\webright )$ and $S_{1},S_{2}\in \mathbf{Rel}\webleft (B,C\webright )$ such that

\begin{align*} R_{1} & \subset R_{2},\\ S_{1} & \subset S_{2}, \end{align*}

we have also $S_{1}\mathbin {\diamond }R_{1}\subset S_{2}\mathbin {\diamond }R_{2}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: