6.5.6 The Right Skew Monoidal Structure on $\mathbf{Rel}\webleft (A,B\webright )$

The category $\mathbf{Rel}\webleft (A,B\webright )$ admits a right skew monoidal category structure consisting of

  • The Underlying Category. The posetal category associated to the poset $\mathbf{Rel}\webleft (A,B\webright )$ of relations from $A$ to $B$ of of .
  • The Right Skew Monoidal Product. The right $J$-skew monoidal product

    \[ \lhd _{J}\colon \mathbf{Rel}\webleft (A,B\webright )\times \mathbf{Rel}\webleft (A,B\webright )\to \mathbf{Rel}\webleft (A,B\webright ) \]

    of Definition 6.5.1.1.1.

  • The Right Skew Monoidal Unit. The functor

    \[ \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright ),\lhd _{J}} \colon \mathsf{pt}\to \mathbf{Rel}\webleft (A,B\webright ) \]

    of Definition 6.5.2.1.1.

  • The Right Skew Associators. The natural transformation

    \[ \alpha ^{\mathbf{Rel}\webleft (A,B\webright ),\rhd _{J}}\colon {\rhd _{J}}\circ {\webleft (\mathsf{id}\times {\rhd _{J}}\webright )}\Longrightarrow {\rhd _{J}}\circ {\webleft ({\rhd _{J}}\times \mathsf{id}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats},-1}_{\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright ),\mathbf{Rel}\webleft (A,B\webright )}} \]

    of Definition 6.5.3.1.1.
  • The Right Skew Left Unitors. The natural transformation

    \[ \lambda ^{\mathbf{Rel}\webleft (A,B\webright ),\rhd _{J}} \colon \mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \Longrightarrow {\rhd _{J}}\circ {\webleft (\mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\rhd }\times \mathsf{id}\webright )} \]

    of Definition 6.5.4.1.1.

  • The Right Skew Right Unitors. The natural transformation

    \[ \rho ^{\mathbf{Rel}\webleft (A,B\webright ),\rhd _{J}} \colon {\rhd _{J}}\circ {\webleft (\mathsf{id}\times \mathbb {1}^{\mathbf{Rel}\webleft (A,B\webright )}_{\rhd }\webright )} \Longrightarrow \mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathbf{Rel}\webleft (A,B\webright )} \]

    of Definition 6.5.5.1.1.

Since $\mathbf{Rel}\webleft (A,B\webright )$ is posetal, the commutativity of the pentagon identity, the right skew left triangle identity, the right skew right triangle identity, the right skew middle triangle identity, and the zigzag identity is automatic, and thus $\mathbf{Rel}\webleft (A,B\webright )$ together with the data in the statement forms a right skew monoidal category.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: