The pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ along $\webleft (f,g\webright )$ is the pair consisting of:

  • The Limit. The pointed set $\webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )$.
  • The Cone. The morphisms of pointed sets

    \begin{align*} \text{pr}_{1} & \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (X,x_{0}\webright ),\\ \text{pr}_{2} & \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\to \webleft (Y,y_{0}\webright ) \end{align*}

    defined by

    \begin{align*} \text{pr}_{1}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x,\\ \text{pr}_{2}\webleft (x,y\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}y \end{align*}

    for each $\webleft (x,y\webright )\in X\times _{Z}Y$.

We claim that $X\times _{Z}Y$ is the categorical pullback of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ over $\webleft (Z,z_{0}\webright )$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

Indeed, given $\webleft (x,y\webright )\in X\times _{Z}Y$, we have

\begin{align*} \webleft [f\circ \text{pr}_{1}\webright ]\webleft (x,y\webright ) & = f\webleft (\text{pr}_{1}\webleft (x,y\webright )\webright )\\ & = f\webleft (x\webright )\\ & = g\webleft (y\webright )\\ & = g\webleft (\text{pr}_{2}\webleft (x,y\webright )\webright )\\ & = \webleft [g\circ \text{pr}_{2}\webright ]\webleft (x,y\webright ),\end{align*}

where $f\webleft (x\webright )=g\webleft (y\webright )$ since $\webleft (x,y\webright )\in X\times _{Z}Y$. Next, we prove that $X\times _{Z}Y$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

\[ \phi \colon \webleft (P,*\webright )\to \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright ) \]

making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \text{pr}_{1}\circ \phi & = p_{1},\\ \text{pr}_{2}\circ \phi & = p_{2}\end{align*}

via

\[ \phi \webleft (x\webright )=\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright ) \]

for each $x\in P$, where we note that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in X\times Y$ indeed lies in $X\times _{Z}Y$ by the condition

\[ f\circ p_{1}=g\circ p_{2}, \]

which gives

\[ f\webleft (p_{1}\webleft (x\webright )\webright )=g\webleft (p_{2}\webleft (x\webright )\webright ) \]

for each $x\in P$, so that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in X\times _{Z}Y$. Lastly, we note that $\phi $ is indeed a morphism of pointed sets, as we have

\begin{align*} \phi \webleft (*\webright ) & = \webleft (p_{1}\webleft (*\webright ),p_{2}\webleft (*\webright )\webright )\\ & = \webleft (x_{0},y_{0}\webright ),\end{align*}

where we have used that $p_{1}$ and $p_{2}$ are morphisms of pointed sets.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: