Let $\webleft (X,x_{0}\webright )$, $\webleft (Y,y_{0}\webright )$, $\webleft (Z,z_{0}\webright )$, and $\webleft (A,a_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignment $\webleft (X,Y,Z,f,g\webright )\mapsto X\times _{f,Z,g}Y$ defines a functor
    \[ -_{1}\times _{-_{3}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )\to \mathsf{Sets}_{*}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\times _{-_{3}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}_{*}\webright )$ to the morphism of pointed sets

    \[ \xi \colon \webleft (X\times _{Z}Y,\webleft (x_{0},y_{0}\webright )\webright )\overset {\exists !}{\to }\webleft (X'\times _{Z'}Y',\webleft (x'_{0},y'_{0}\webright )\webright ) \]

    given by

    \[ \xi \webleft (x,y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\phi \webleft (x\webright ),\psi \webleft (y\webright )\webright ) \]

    for each $\webleft (x,y\webright )\in X\times _{Z}Y$, which is the unique morphism of pointed sets making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}_{*}$, we have isomorphisms of pointed sets

    \[ \webleft (X\times _{W}Y\webright )\times _{V}Z\cong \webleft (X\times _{W}Y\webright )\times _{Y}\webleft (Y\times _{V}Z\webright ) \cong X\times _{W}\webleft (Y\times _{V}Z\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of pointed sets
  4. Commutativity. We have an isomorphism of pointed sets
  5. Interaction With Products. We have an isomorphism of pointed sets
  6. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets}_{*},\times _{X},X\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pullback diagram.
Item 2: Associativity
This follows from Chapter 2: Constructions With Sets, Item 2 of Proposition 2.1.4.1.3.
Item 3: Unitality
This follows from Chapter 2: Constructions With Sets, Item 3 of Proposition 2.1.4.1.3.
Item 4: Commutativity
This follows from Chapter 2: Constructions With Sets, Item 4 of Proposition 2.1.4.1.3.
Item 5: Interaction With Products
This follows from Chapter 2: Constructions With Sets, Item 6 of Proposition 2.1.4.1.3.
Item 6: Symmetric Monoidality
This follows from Chapter 2: Constructions With Sets, Item 7 of Proposition 2.1.4.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: