Let $A$, $B$, $C$, and $X$ be sets.

  1. Functoriality. The assignment $\webleft (A,B,C,f,g\webright )\mapsto A\times _{f,C,g}B$ defines a functor
    \[ -_{1}\times _{-_{3}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\times _{-_{3}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )$ to the map $\xi \colon A\times _{C}B\overset {\exists !}{\to }A'\times _{C'}B'$ given by

    \[ \xi \webleft (a,b\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\phi \webleft (a\webright ),\psi \webleft (b\webright )\webright ) \]

    for each $\webleft (a,b\webright )\in A\times _{C}B$, which is the unique map making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}$, we have isomorphisms of sets

    \[ \webleft (A\times _{X}B\webright )\times _{Y}C\cong \webleft (A\times _{X}B\webright )\times _{B}\webleft (B\times _{Y}C\webright ) \cong A\times _{X}\webleft (B\times _{Y}C\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of sets
  4. Commutativity. We have an isomorphism of sets
  5. Annihilation With the Empty Set. We have isomorphisms of sets
  6. Interaction With Products. We have an isomorphism of sets
  7. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets},\times _{X},X\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pullback diagram.
Item 2: Associativity
Indeed, we have

\begin{align*} \webleft (A\times _{X}B\webright )\times _{Y}C & \cong \webleft\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times _{X}B\webright )\times C\ \middle |\ h\webleft (b\webright )=k\webleft (c\webright )\webright\} \\ & \cong \webleft\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times B\webright )\times C\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times _{Y}C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$}\webright\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ) \end{align*}

and

\begin{align*} \webleft (A\times _{X}B\webright )\times _{B}\webleft (B\times _{Y}C\webright ) & \cong \webleft\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times _{X}B\webright )\times \webleft (B\times _{Y}C\webright )\ \middle |\ b=b'\webright\} \\ & \cong \webleft\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times B\webright )\times \webleft (B\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,\webleft (b',c\webright )\webright )\webright )\in A\times \webleft (B\times \webleft (B\times C\webright )\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times _{B}B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and}\\ & \text{$h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ), \end{align*}

where we have used Item 3 for the isomorphism $B\times _{B}B\cong B$.
Item 3: Unitality
Indeed, we have
\begin{align*} X\times _{X}A & \cong \webleft\{ \webleft (x,a\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\webright\} ,\\ A\times _{X}X & \cong \webleft\{ \webleft (a,x\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\webright\} , \end{align*}

which are isomorphic to $A$ via the maps $\webleft (x,a\webright )\mapsto a$ and $\webleft (a,x\webright )\mapsto a$.

Item 4: Commutativity
Clear.
Item 5: Annihilation With the Empty Set
Clear.
Item 6: Interaction With Products
Clear.
Item 7: Symmetric Monoidality
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: