2.1.4 Pullbacks

Let $A$, $B$, and $C$ be sets and let $f\colon A\to C$ and $g\colon B\to C$ be functions.

The pullback of $A$ and $B$ over $C$ along $f$ and $g$[1] is the pair[2] $\webleft (A\times _{C}B,\webleft\{ \text{pr}_{1},\text{pr}_{2}\webright\} \webright )$ consisting of:

  • The Limit. The set $A\times _{C}B$ defined by

    \[ A\times _{C}B\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (a,b\webright )\in A\times B\ \middle |\ f\webleft (a\webright )=g\webleft (b\webright )\webright\} . \]

  • The Cone. The maps

    \begin{align*} \text{pr}_{1} & \colon A\times _{C}B\to A,\\ \text{pr}_{2} & \colon A\times _{C}B\to B \end{align*}

    defined by

    \begin{align*} \text{pr}_{1}\webleft (a,b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a,\\ \text{pr}_{2}\webleft (a,b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}b \end{align*}

    for each $\webleft (a,b\webright )\in A\times _{C}B$.

We claim that $A\times _{C}B$ is the categorical pullback of $A$ and $B$ over $C$ with respect to $\webleft (f,g\webright )$ in $\mathsf{Sets}$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

Indeed, given $\webleft (a,b\webright )\in A\times _{C}B$, we have

\begin{align*} \webleft [f\circ \text{pr}_{1}\webright ]\webleft (a,b\webright ) & = f\webleft (\text{pr}_{1}\webleft (a,b\webright )\webright )\\ & = f\webleft (a\webright )\\ & = g\webleft (b\webright )\\ & = g\webleft (\text{pr}_{2}\webleft (a,b\webright )\webright )\\ & = \webleft [g\circ \text{pr}_{2}\webright ]\webleft (a,b\webright ),\end{align*}

where $f\webleft (a\webright )=g\webleft (b\webright )$ since $\webleft (a,b\webright )\in A\times _{C}B$. Next, we prove that $A\times _{C}B$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to A\times _{C}B$ making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \text{pr}_{1}\circ \phi & = p_{1},\\ \text{pr}_{2}\circ \phi & = p_{2}\end{align*}

via

\[ \phi \webleft (x\webright )=\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright ) \]

for each $x\in P$, where we note that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in A\times B$ indeed lies in $A\times _{C}B$ by the condition

\[ f\circ p_{1}=g\circ p_{2}, \]

which gives

\[ f\webleft (p_{1}\webleft (x\webright )\webright )=g\webleft (p_{2}\webleft (x\webright )\webright ) \]

for each $x\in P$, so that $\webleft (p_{1}\webleft (x\webright ),p_{2}\webleft (x\webright )\webright )\in A\times _{C}B$.

Here are some examples of pullbacks of sets.

  1. Unions via Intersections. Let $A,B\subset X$. We have a bijection of sets

Item 1: Unions via Intersections
Indeed, we have
\begin{align*} A\times _{A\cup B}B & \cong \webleft\{ \webleft (x,y\webright )\in A\times B\ \middle |\ x=y\webright\} \\ & \cong A\cap B. \end{align*}

This finishes the proof.

Let $A$, $B$, $C$, and $X$ be sets.

  1. Functoriality. The assignment $\webleft (A,B,C,f,g\webright )\mapsto A\times _{f,C,g}B$ defines a functor
    \[ -_{1}\times _{-_{3}}-_{1}\colon \mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )\to \mathsf{Sets}, \]

    where $\mathcal{P}$ is the category that looks like this:

    In particular, the action on morphisms of $-_{1}\times _{-_{3}}-_{1}$ is given by sending a morphism

    in $\mathsf{Fun}\webleft (\mathcal{P},\mathsf{Sets}\webright )$ to the map $\xi \colon A\times _{C}B\overset {\exists !}{\to }A'\times _{C'}B'$ given by

    \[ \xi \webleft (a,b\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\phi \webleft (a\webright ),\psi \webleft (b\webright )\webright ) \]

    for each $\webleft (a,b\webright )\in A\times _{C}B$, which is the unique map making the diagram

    commute.

  2. Associativity. Given a diagram

    in $\mathsf{Sets}$, we have isomorphisms of sets

    \[ \webleft (A\times _{X}B\webright )\times _{Y}C\cong \webleft (A\times _{X}B\webright )\times _{B}\webleft (B\times _{Y}C\webright ) \cong A\times _{X}\webleft (B\times _{Y}C\webright ), \]

    where these pullbacks are built as in the diagrams

  3. Unitality. We have isomorphisms of sets
  4. Commutativity. We have an isomorphism of sets
  5. Annihilation With the Empty Set. We have isomorphisms of sets
  6. Interaction With Products. We have an isomorphism of sets
  7. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets},\times _{X},X\webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This is a special case of functoriality of co/limits, of , with the explicit expression for $\xi $ following from the commutativity of the cube pullback diagram.
Item 2: Associativity
Indeed, we have

\begin{align*} \webleft (A\times _{X}B\webright )\times _{Y}C & \cong \webleft\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times _{X}B\webright )\times C\ \middle |\ h\webleft (b\webright )=k\webleft (c\webright )\webright\} \\ & \cong \webleft\{ \webleft (\webleft (a,b\webright ),c\webright )\in \webleft (A\times B\webright )\times C\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times _{Y}C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$}\webright\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ) \end{align*}

and

\begin{align*} \webleft (A\times _{X}B\webright )\times _{B}\webleft (B\times _{Y}C\webright ) & \cong \webleft\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times _{X}B\webright )\times \webleft (B\times _{Y}C\webright )\ \middle |\ b=b'\webright\} \\ & \cong \webleft\{ \webleft (\webleft (a,b\webright ),\webleft (b',c\webright )\webright )\in \webleft (A\times B\webright )\times \webleft (B\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,\webleft (b',c\webright )\webright )\webright )\in A\times \webleft (B\times \webleft (B\times C\webright )\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$, $b=b'$,}\\ & \text{and $h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (\webleft (b,b'\webright ),c\webright )\webright )\in A\times \webleft (\webleft (B\times _{B}B\webright )\times C\webright )\ \middle |\ \begin{aligned} & \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and}\\ & \text{$h\webleft (b'\webright )=k\webleft (c\webright )$}\end{aligned}\webright\} \\ & \cong \webleft\{ \webleft (a,\webleft (b,c\webright )\webright )\in A\times \webleft (B\times C\webright )\ \middle |\ \text{$f\webleft (a\webright )=g\webleft (b\webright )$ and $h\webleft (b\webright )=k\webleft (c\webright )$}\webright\} \\ & \cong A\times _{X}\webleft (B\times _{Y}C\webright ), \end{align*}

where we have used Item 3 for the isomorphism $B\times _{B}B\cong B$.
Item 3: Unitality
Indeed, we have
\begin{align*} X\times _{X}A & \cong \webleft\{ \webleft (x,a\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\webright\} ,\\ A\times _{X}X & \cong \webleft\{ \webleft (a,x\webright )\in X\times A\ \middle |\ f\webleft (a\webright )=x\webright\} , \end{align*}

which are isomorphic to $A$ via the maps $\webleft (x,a\webright )\mapsto a$ and $\webleft (a,x\webright )\mapsto a$.

Item 4: Commutativity
Clear.
Item 5: Annihilation With the Empty Set
Clear.
Item 6: Interaction With Products
Clear.
Item 7: Symmetric Monoidality
Omitted.


Footnotes

[1] Further Terminology: Also called the fibre product of $A$ and $B$ over $C$ along $f$ and $g$.
[2] Further Notation: Also written $A\times _{f,C,g}B$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: