The equaliser of $\webleft (f,g\webright )$ is the pair consisting of:

  • The Limit. The pointed set $\webleft (\text{Eq}\webleft (f,g\webright ),x_{0}\webright )$.
  • The Cone. The morphism of pointed sets

    \[ \text{eq}\webleft (f,g\webright )\colon \webleft (\text{Eq}\webleft (f,g\webright ),x_{0}\webright )\hookrightarrow \webleft (X,x_{0}\webright ) \]

    given by the canonical inclusion $\text{eq}\webleft (f,g\webright )\hookrightarrow \text{Eq}\webleft (f,g\webright )\hookrightarrow X$.

We claim that $\webleft (\text{Eq}\webleft (f,g\webright ),x_{0}\webright )$ is the categorical equaliser of $f$ and $g$ in $\mathsf{Sets}_{*}$. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

\[ f\circ \text{eq}\webleft (f,g\webright )=g\circ \text{eq}\webleft (f,g\webright ), \]

which indeed holds by the definition of the set $\text{Eq}\webleft (f,g\webright )$. Next, we prove that $\text{Eq}\webleft (f,g\webright )$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

in $\mathsf{Sets}_{*}$. Then there exists a unique morphism of pointed sets

\[ \phi \colon \webleft (E,*\webright )\to \webleft (\text{Eq}\webleft (f,g\webright ),x_{0}\webright ) \]

making the diagram

commute, being uniquely determined by the condition

\[ \text{eq}\webleft (f,g\webright )\circ \phi =e \]

via

\[ \phi \webleft (x\webright )=e\webleft (x\webright ) \]

for each $x\in E$, where we note that $e\webleft (x\webright )\in A$ indeed lies in $\text{Eq}\webleft (f,g\webright )$ by the condition

\[ f\circ e=g\circ e, \]

which gives

\[ f\webleft (e\webleft (x\webright )\webright )=g\webleft (e\webleft (x\webright )\webright ) \]

for each $x\in E$, so that $e\webleft (x\webright )\in \text{Eq}\webleft (f,g\webright )$. Lastly, we note that $\phi $ is indeed a morphism of pointed sets, as we have

\begin{align*} \phi \webleft (*\webright ) & = e\webleft (*\webright )\\ & = x_{0},\end{align*}

where we have used that $e$ is a morphism of pointed sets.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: