The universal property in Definition 4.2.1.1.1 is equivalent to the following one:

  • We have a bijection

    \[ \mathsf{Sets}_{*}\webleft (A\odot X,K\webright ) \cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright ), \]

    natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright )$ is the set defined by

    \[ \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \mathsf{Sets}\webleft (A\times X,K\webright )\ \middle |\ \begin{aligned} & \text{for each $a\in A$, we}\\ & \text{have $f\webleft (a,x_{0}\webright )=k_{0}$}\end{aligned} \webright\} . \]

We claim we have a bijection

\[ \mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (X,K\webright )\webright )\cong \mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright ) \]

natural in $\webleft (K,k_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$. Indeed, this bijection is a restriction of the bijection

\[ \mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (X,K\webright )\webright )\cong \mathsf{Sets}\webleft (A\times X,K\webright ) \]

of Chapter 2: Constructions With Sets, Item 2 of Proposition 2.1.3.1.2:

  • A map
    in $\mathsf{Sets}\webleft (A,\mathsf{Sets}_{*}\webleft (X,K\webright )\webright )$ gets sent to the map

    \[ \xi ^{\dagger }\colon A\times X\to K \]

    defined by

    \[ \xi ^{\dagger }\webleft (a,x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{a}\webleft (x\webright ) \]

    for each $\webleft (a,x\webright )\in A\times X$, which indeed lies in $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright )$, as we have

    \begin{align*} \xi ^{\dagger }\webleft (a,x_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi _{a}\webleft (x_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}k_{0}\end{align*}

    for each $a\in A$, where we have used that $\xi _{a}\in \mathsf{Sets}_{*}\webleft (X,K\webright )$ is a morphism of pointed sets.

  • Conversely, a map

    \[ \xi \colon A\times X\to K \]

    in $\mathsf{Sets}^{\otimes }_{\mathbb {E}_{0}}\webleft (A\times X,K\webright )$ gets sent to the map

    where

    \[ \xi ^{\dagger }_{a}\colon X \to K \]

    is the map defined by

    \[ \xi ^{\dagger }_{a}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (a,x\webright ) \]

    for each $x\in X$, and indeed lies in $\mathsf{Sets}_{*}\webleft (X,K\webright )$, as we have

    \begin{align*} \xi ^{\dagger }_{a}\webleft (x_{0}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\xi \webleft (a,x_{0}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}k_{0}.\end{align*}

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: