In detail, the left tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pointed set $\webleft (X\lhd Y,\webleft [x_{0}\webright ]\webright )$ consisting of:

  • The Underlying Set. The set $X\lhd Y$ defined by

    \begin{align*} X\lhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert Y\right\rvert \odot X\\ & \cong \bigvee _{y\in Y}\webleft (X,x_{0}\webright ), \end{align*}

    where $\left\lvert Y\right\rvert $ denotes the underlying set of $\webleft (Y,y_{0}\webright )$.

  • The Underlying Basepoint. The point $\webleft [\webleft (y_{0},x_{0}\webright )\webright ]$ of $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$, which is equal to $\webleft [\webleft (y,x_{0}\webright )\webright ]$ for any $y\in Y$.

Since $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$ is defined as the quotient of $\coprod _{y\in Y}X$ by the equivalence relation $R$ generated by declaring $\webleft (y,x\webright )\sim \webleft (y',x'\webright )$ if $x=x'=x_{0}$, we have, by , , a natural bijection

\[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \textup{Hom}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright ), \]

where $\textup{Hom}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ is the set

\[ \textup{Hom}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \textup{Hom}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$, then}\\ & \text{$f\webleft (y,x\webright )=f\webleft (y',x'\webright )$}\end{aligned} \webright\} . \]

However, the condition $\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$ only holds when:

  1. We have $x=x'$ and $y=y'$.
  2. We have $x=x'=x_{0}$.

So, given $f\in \textup{Hom}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )$ with a corresponding $\overline{f}\colon X\lhd Y\to Z$, the latter case above implies

\begin{align*} f\webleft (\webleft [\webleft (y,x_{0}\webright )\webright ]\webright ) & = f\webleft (\webleft [\webleft (y',x_{0}\webright )\webright ]\webright )\\ & = f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ), \end{align*}

and since $\overline{f}\colon X\lhd Y\to Z$ is a pointed map, we have

\begin{align*} f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ) & = \overline{f}\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright )\\ & = z_{0}. \end{align*}

Thus the elements $f$ in $\textup{Hom}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality

\[ f\webleft (x_{0},y\webright )=z_{0} \]

for each $y\in Y$, giving an equality

\[ \textup{Hom}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )=\textup{Hom}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \]

of sets, which when composed with our earlier isomorphism

\[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \textup{Hom}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]

gives our desired natural bijection, finishing the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: