Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.
-
Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\lhd Y$ define functors
\[ \begin{array}{ccc} X\lhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\lhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\lhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]
In particular, given pointed maps
\begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}
the induced map
\[ f\lhd g\colon X\lhd Y\to A\lhd B \]
is given by
\[ \webleft [f\lhd g\webright ]\webleft (x\lhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\lhd g\webleft (y\webright ) \]
for each $x\lhd y\in X\lhd Y$.
-
Adjointness I. We have an adjunction witnessed by a bijection of sets
\[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X,\webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webright ) \]
natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 5.3.2.1.1.
-
Adjointness II. The functor
\[ X\lhd -\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]
does not admit a right adjoint.
-
Adjointness III. We have a bijection of sets
\[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}}\webleft (|Y|,\mathsf{Sets}_{*}\webleft (X,Z\webright )\webright ) \]
natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.