Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\lhd Y$ define functors
    \begin{gather*} \begin{aligned} X\lhd - & \colon \mathsf{Sets}_{*} \to \mathsf{Sets}_{*},\\ -\lhd Y & \colon \mathsf{Sets}_{*} \to \mathsf{Sets}_{*},\\ \end{aligned}\\ -_{1}\lhd -_{2} \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \to \mathsf{Sets}_{*}. \end{gather*}

    In particular, given pointed maps

    \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}

    the induced map

    \[ f\lhd g\colon X\lhd Y\to A\lhd B \]

    is given by

    \[ \webleft [f\lhd g\webright ]\webleft (x\lhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\lhd g\webleft (y\webright ) \]

    for each $x\lhd y\in X\lhd Y$.

  2. Adjointness I. We have an adjunction
    witnessed by a bijection of sets
    \[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X,\webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 4.3.2.1.1.

  3. Adjointness II. The functor
    \[ X\lhd -\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    does not admit a right adjoint.

  4. Adjointness III. We have a bijection of sets
    \[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}}\webleft (|Y|,\mathsf{Sets}_{*}\webleft (X,Z\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness I
This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3: Adjointness II
For $X\lhd -$ to admit a right adjoint would require it to preserve colimits by of . However, we have
\begin{align*} X\lhd \text{pt}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\text{pt}|\odot X\\ & \cong X\\ & \ncong \text{pt}, \end{align*}

and thus we see that $X\lhd -$ does not have a right adjoint.

Item 4: Adjointness III
This follows from Item 2 of Proposition 4.2.1.1.6.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: