The left internal Hom of pointed sets satisfies the following universal property:

\[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright )\cong \mathsf{Sets}_{*}\webleft (X,\webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webright ) \]

That is to say, the following data are in bijection:

  1. Pointed maps $f\colon X\lhd Y\to Z$.
  2. Pointed maps $f\colon X\to \webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: