Taking $y=y_{0}$, we see that the morphism $\smash {\alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}}$ acts on elements as

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}\webleft (\webleft (x\lhd y_{0}\webright )\lhd z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\lhd \webleft (y_{0}\lhd z\webright ). \]

However, by the definition of $\lhd $, we have $y_{0}\lhd z=y_{0}\lhd z'$ for all $z,z'\in Z$, preventing $\alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}$ from being non-invertible.

Firstly, note that, given $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the map

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z} \colon \webleft (X\lhd Y\webright )\lhd Z \to X\lhd \webleft (Y\lhd Z\webright ) \]

is indeed a morphism of pointed sets, as we have

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}\webleft (\webleft (x_{0}\lhd y_{0}\webright )\lhd z_{0}\webright )=x_{0}\lhd \webleft (y_{0}\lhd z_{0}\webright ). \]

Next, we claim that $\alpha ^{\mathsf{Sets}_{*},\lhd }$ is a natural transformation. We need to show that, given morphisms of pointed sets

\begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (X',x'_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (Y',y'_{0}\webright ),\\ h & \colon \webleft (Z,z_{0}\webright ) \to \webleft (Z’,z’_{0}\webright ) \end{align*}

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha ^{\mathsf{Sets}_{*},\lhd }$ to be a natural transformation. This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: