4.3.4 The Left Skew Associator

The skew associator of the left tensor product of pointed sets is the natural transformation

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }\colon {\lhd }\circ {\webleft ({\lhd }\times \text{id}_{\mathsf{Sets}_{*}}\webright )}\Longrightarrow {\lhd }\circ {\webleft (\text{id}_{\mathsf{Sets}_{*}}\times {\lhd }\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathsf{Sets}_{*},\mathsf{Sets}_{*},\mathsf{Sets}_{*}}} \]

as in the diagram

whose component

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z} \colon \webleft (X\lhd Y\webright )\lhd Z \to X\lhd \webleft (Y\lhd Z\webright ) \]

at $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by

\begin{align*} \webleft (X\lhd Y\webright )\lhd Z & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|Z|\odot \webleft (X\lhd Y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|Z|\odot \webleft (|Y|\odot X\webright )\\ & \cong \bigvee _{z\in Z}|Y|\odot X\\ & \cong \bigvee _{z\in Z}\webleft (\bigvee _{y\in Y}X\webright )\\ & \to \bigvee _{\webleft [\webleft (z,y\webright )\webright ]\in \bigvee _{z\in Z}Y}X\\ & \cong \bigvee _{\webleft [\webleft (z,y\webright )\webright ]\in |Z|\odot Y}X\\ & \cong ||Z|\odot Y|\odot X\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|Y\lhd Z|\odot X\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\lhd \webleft (Y\lhd Z\webright ),\end{align*}

where the map

\[ \bigvee _{z\in Z}\webleft (\bigvee _{y\in Y}X\webright )\to \bigvee _{\webleft (z,y\webright )\in \bigvee _{z\in Z}Y}X \]

is given by $\webleft [\webleft (z,\webleft [\webleft (y,x\webright )\webright ]\webright )\webright ]\mapsto \webleft [\webleft (\webleft [\webleft (z,y\webright )\webright ],x\webright )\webright ]$.

(Proven below in a bit.)

Unwinding the notation for elements, we have

\begin{align*} \webleft [\webleft (z,\webleft [\webleft (y,x\webright )\webright ]\webright )\webright ] & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (z,x\lhd y\webright )\webright ]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (x\lhd y\webright )\lhd z \end{align*}

and

\begin{align*} \webleft [\webleft (\webleft [\webleft (z,y\webright )\webright ],x\webright )\webright ] & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (y\lhd z,x\webright )\webright ]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\lhd \webleft (y\lhd z\webright ). \end{align*}

So, in other words, $\alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}$ acts on elements via

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}\webleft (\webleft (x\lhd y\webright )\lhd z\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\lhd \webleft (y\lhd z\webright ) \]

for each $\webleft (x\lhd y\webright )\lhd z\in \webleft (X\lhd Y\webright )\lhd Z$.

Taking $y=y_{0}$, we see that the morphism $\smash {\alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}}$ acts on elements as

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}\webleft (\webleft (x\lhd y_{0}\webright )\lhd z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x\lhd \webleft (y_{0}\lhd z\webright ). \]

However, by the definition of $\lhd $, we have $y_{0}\lhd z=y_{0}\lhd z'$ for all $z,z'\in Z$, preventing $\alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}$ from being non-invertible.

Firstly, note that, given $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the map

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z} \colon \webleft (X\lhd Y\webright )\lhd Z \to X\lhd \webleft (Y\lhd Z\webright ) \]

is indeed a morphism of pointed sets, as we have

\[ \alpha ^{\mathsf{Sets}_{*},\lhd }_{X,Y,Z}\webleft (\webleft (x_{0}\lhd y_{0}\webright )\lhd z_{0}\webright )=x_{0}\lhd \webleft (y_{0}\lhd z_{0}\webright ). \]

Next, we claim that $\alpha ^{\mathsf{Sets}_{*},\lhd }$ is a natural transformation. We need to show that, given morphisms of pointed sets

\begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (X',x'_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (Y',y'_{0}\webright ),\\ h & \colon \webleft (Z,z_{0}\webright ) \to \webleft (Z’,z’_{0}\webright ) \end{align*}

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\alpha ^{\mathsf{Sets}_{*},\lhd }$ to be a natural transformation. This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: