The skew left unitor of the left tensor product of pointed sets is the natural transformation
whose component
\[ \lambda ^{\mathsf{Sets}_{*},\lhd }_{X} \colon S^{0}\lhd X \to X \]
at $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by the composition
\begin{align*} S^{0}\lhd X & \cong |X|\odot S^{0}\\ & \cong \bigvee _{x\in X}S^{0}\\ & \rightarrow X, \end{align*}
where $\bigvee _{x\in X}S^{0}\to X$ is the map given by
\begin{align*} \webleft [\webleft (x,0\webright )\webright ] & \mapsto x_{0},\\ \webleft [\webleft (x,1\webright )\webright ] & \mapsto x \end{align*}
for each $x\in X$.
Firstly, note that, given $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the map
\[ \lambda ^{\mathsf{Sets}_{*},\lhd }_{X} \colon S^{0}\lhd X \to X \]
is indeed a morphism of pointed sets, as we have
\[ \lambda ^{\mathsf{Sets}_{*},\lhd }_{X}\webleft (0\lhd x_{0}\webright )=x_{0}. \]
Next, we claim that $\lambda ^{\mathsf{Sets}_{*},\lhd }$ is a natural transformation. We need to show that, given a morphism of pointed sets
\[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ), \]
the diagram
commutes. Indeed, this diagram acts on elements as
and
and hence indeed commutes, showing $\lambda ^{\mathsf{Sets}_{*},\lhd }$ to be a natural transformation. This finishes the proof.