The right tensor product of pointed sets may be described as follows:
- The right tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair $\webleft (\webleft (X\rhd Y,x_{0}\rhd y_{0}\webright ),\iota \webright )$ consisting of
- A pointed set $\webleft (X\rhd Y,x_{0}\rhd y_{0}\webright )$;
- A right bilinear morphism of pointed sets $\iota \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\rhd Y$;
- Given another such pair $\webleft (\webleft (Z,z_{0}\webright ),f\webright )$ consisting of
- A pointed set $\webleft (Z,z_{0}\webright )$;
- A right bilinear morphism of pointed sets $f\colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\rhd Y$;
commute.