Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

  1. Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\rhd Y$ define functors
    \begin{gather*} \begin{aligned} X\rhd - & \colon \mathsf{Sets}_{*} \to \mathsf{Sets}_{*},\\ -\rhd Y & \colon \mathsf{Sets}_{*} \to \mathsf{Sets}_{*},\\ \end{aligned}\\ -_{1}\rhd -_{2} \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \to \mathsf{Sets}_{*}. \end{gather*}

    In particular, given pointed maps

    \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}

    the induced map

    \[ f\rhd g\colon X\rhd Y\to A\rhd B \]

    is given by

    \[ \webleft [f\rhd g\webright ]\webleft (x\rhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\rhd g\webleft (y\webright ) \]

    for each $x\rhd y\in X\rhd Y$.

  2. Adjointness I. We have an adjunction
    witnessed by a bijection of sets
    \[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (Y,\webleft [X,Z\webright ]^{\rhd }_{\mathsf{Sets}_{*}}\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\rhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 4.4.2.1.1.

  3. Adjointness II. The functor
    \[ -\rhd Y\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    does not admit a right adjoint.

  4. Adjointness III. We have a bijection of sets
    \[ \textup{Hom}_{\mathsf{Sets}_{*}}\webleft (X\rhd Y,Z\webright )\cong \textup{Hom}_{\mathsf{Sets}}\webleft (|X|,\mathsf{Sets}_{*}\webleft (Y,Z\webright )\webright ) \]

    natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness I
This follows from Item 3 of Proposition 4.2.1.1.6.
Item 3: Adjointness II
For $-\rhd Y$ to admit a right adjoint would require it to preserve colimits by of . However, we have
\begin{align*} \text{pt}\rhd X & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\text{pt}|\odot X\\ & \cong X\\ & \ncong \text{pt}, \end{align*}

and thus we see that $-\rhd Y$ does not have a right adjoint.

Item 4: Adjointness III
This follows from Item 2 of Proposition 4.2.1.1.6.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: