5.4.5 The Right Skew Left Unitor

The skew left unitor of the right tensor product of pointed sets is the natural transformation

whose component

\[ \lambda ^{\mathsf{Sets}_{*},\rhd }_{X} \colon X \to S^{0}\rhd X \]

at $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$ is given by the composition

\begin{align*} X & \rightarrow X\vee X\\ & \cong |S^{0}|\odot X\\ & \cong S^{0}\rhd X, \end{align*}

where $X\to X\vee X$ is the map sending $X$ to the second factor of $X$ in $X\vee X$.

(Proven below in a bit.)

In other words, $\smash {\lambda ^{\mathsf{Sets}_{*},\rhd }_{X}}$ acts on elements as

\[ \lambda ^{\mathsf{Sets}_{*},\rhd }_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (1,x\webright )\webright ] \]

i.e. by

\[ \lambda ^{\mathsf{Sets}_{*},\rhd }_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}1\rhd x \]

for each $x\in X$.

The morphism $\smash {\lambda ^{\mathsf{Sets}_{*},\rhd }_{X}}$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $0\rhd x$ of $S^{0}\rhd X$ with $x\neq x_{0}$ are outside the image of $\lambda ^{\mathsf{Sets}_{*},\rhd }_{X}$, which sends $x$ to $1\rhd x$.

Firstly, note that, given $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the map

\[ \lambda ^{\mathsf{Sets}_{*},\rhd }_{X} \colon X \to S^{0}\rhd X \]

is indeed a morphism of pointed sets, as we have

\begin{align*} \lambda ^{\mathsf{Sets}_{*},\rhd }_{X}\webleft (x_{0}\webright ) & = 1\rhd x_{0}\\ & = 0\rhd x_{0}.\end{align*}

Next, we claim that $\lambda ^{\mathsf{Sets}_{*},\rhd }$ is a natural transformation. We need to show that, given a morphism of pointed sets

\[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ), \]

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\lambda ^{\mathsf{Sets}_{*},\rhd }$ to be a natural transformation. This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: