The morphism $\smash {\lambda ^{\mathsf{Sets}_{*},\rhd }_{X}}$ is non-invertible, as it is non-surjective when viewed as a map of sets, since the elements $0\rhd x$ of $S^{0}\rhd X$ with $x\neq x_{0}$ are outside the image of $\lambda ^{\mathsf{Sets}_{*},\rhd }_{X}$, which sends $x$ to $1\rhd x$.

Firstly, note that, given $\webleft (X,x_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the map

\[ \lambda ^{\mathsf{Sets}_{*},\rhd }_{X} \colon X \to S^{0}\rhd X \]

is indeed a morphism of pointed sets, as we have

\begin{align*} \lambda ^{\mathsf{Sets}_{*},\rhd }_{X}\webleft (x_{0}\webright ) & = 1\rhd x_{0}\\ & = 0\rhd x_{0}.\end{align*}

Next, we claim that $\lambda ^{\mathsf{Sets}_{*},\rhd }$ is a natural transformation. We need to show that, given a morphism of pointed sets

\[ f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright ), \]

the diagram

commutes. Indeed, this diagram acts on elements as

and hence indeed commutes, showing $\lambda ^{\mathsf{Sets}_{*},\rhd }$ to be a natural transformation. This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: