• Monoidality. The diagonal
    \[ \Delta ^{\wedge }\colon \text{id}_{\mathsf{Sets}_{*}}\Longrightarrow {\wedge }\circ {\Delta ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*}}}, \]

    of the smash product of pointed sets is a monoidal natural transformation:

    1. Compatibility With Strong Monoidality Constraints. For each $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright )\in \text{Obj}\webleft (\mathsf{Sets}_{*}\webright )$, the diagram

      commutes.

    2. Compatibility With Strong Unitality Constraints. The diagrams
      commute, i.e. we have
      \begin{align*} \Delta ^{\wedge }_{S^{0}} & = \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}}\\ & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}, \end{align*}

      where we recall that the equalities

      \begin{align*} \lambda ^{\mathsf{Sets}_{*}}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*}}_{S^{0}},\\ \lambda ^{\mathsf{Sets}_{*},-1}_{S^{0}} & = \rho ^{\mathsf{Sets}_{*},-1}_{S^{0}}\end{align*}

      are always true in any monoidal category by of .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: