The right Kan lift

\[ \text{Rift}_{R}\colon \mathrm{Rel}\webleft (X,B\webright )\to \mathrm{Rel}\webleft (X,A\webright ) \]

along $R$ in $\textbf{Rel}$ exists and is given by

\[ \text{Rift}_{R}\webleft (S\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{-_{2}}_{b},S^{-_{1}}_{b}\webright ) \]

for each $S\in \mathrm{Rel}\webleft (X,B\webright )$, so that the following conditions are equivalent:

  1. We have $x\sim _{\text{Rift}_{R}\webleft (S\webright )}a$.
  2. For each $b\in B$, if $a\sim _{R}b$, then $x\sim _{S}b$.

We have

\begin{align*} \textup{Hom}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,T\webright ) & \cong \int _{x\in X}\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (\webleft (R\mathbin {\diamond }S\webright )^{x}_{b},T^{x}_{b}\webright )\\ & \cong \int _{x\in X}\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (\webleft (\int ^{a\in A}R^{a}_{b}\times S^{x}_{a}\webright ),T^{x}_{b}\webright )\\ & \cong \int _{x\in X}\int _{b\in B}\int _{a\in A}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{a}_{b}\times S^{x}_{a},T^{x}_{b}\webright )\\ & \cong \int _{x\in X}\int _{b\in B}\int _{a\in A}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (S^{x}_{a},\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{a}_{b},T^{x}_{b}\webright )\webright )\\ & \cong \int _{x\in X}\int _{a\in A}\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (S^{x}_{a},\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{a}_{b},T^{x}_{b}\webright )\webright )\\ & \cong \int _{x\in X}\int _{a\in A}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (S^{x}_{a},\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{a}_{b},T^{x}_{b}\webright )\webright )\\ & \cong \textup{Hom}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,\int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{-_{2}}_{b},T^{-_{1}}_{b}\webright )\webright )\end{align*}

naturally in each $S\in \mathbf{Rel}\webleft (X,A\webright )$ and each $T\in \mathbf{Rel}\webleft (X,B\webright )$, showing that

\[ \int _{b\in B}\mathbf{Hom}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{-_{2}}_{b},T^{-_{1}}_{b}\webright ) \]

is right adjoint to the postcomposition functor $R\mathbin {\diamond }-$, being thus the right Kan lift along $R$. Here we have used the following results, respectively (i.e. for each $\cong $ sign):

  1. Chapter 6: Relations, Item 1 of Proposition 6.1.1.1.5;
  2. Definition 7.3.12.1.1;
  3. of ;
  4. Chapter 1: Sets, Proposition 1.2.2.1.5;
  5. of ;
  6. of ;
  7. Chapter 6: Relations, Item 1 of Proposition 6.1.1.1.5.
This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: