Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.

  1. Functoriality. The assignment $V\mapsto R_{-1}\webleft (V\webright )$ defines a functor
    \[ R_{-1}\colon \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have

      \[ \webleft [R_{-1}\webright ]\webleft (V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{-1}\webleft (V\webright ); \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (B\webright )$:
      • If $U\subset V$, then $R_{-1}\webleft (U\webright )\subset R_{-1}\webleft (V\webright )$.

  2. Adjointness. We have an adjunction
    witnessed by a bijections of sets
    \[ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (R_{*}\webleft (U\webright ),V\webright )\cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,R_{-1}\webleft (V\webright )\webright ), \]

    natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$, i.e. such that:

    • The following conditions are equivalent:
      • We have $R_{*}\webleft (U\webright )\subset V$;
      • We have $U\subset R_{-1}\webleft (V\webright )$.

  3. Lax Preservation of Colimits. We have an inclusion of sets
    \[ \bigcup _{i\in I}R_{-1}\webleft (U_{i}\webright )\subset R_{-1}\webleft (\bigcup _{i\in I}U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} R_{-1}\webleft (U\webright )\cup R_{-1}\webleft (V\webright ) \subset R_{-1}\webleft (U\cup V\webright ),\\ \text{Ø}\subset R_{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  4. Preservation of Limits. We have an equality of sets
    \[ R_{-1}\webleft (\bigcap _{i\in I}U_{i}\webright )=\bigcap _{i\in I}R_{-1}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} R_{-1}\webleft (U\cap V\webright ) = R_{-1}\webleft (U\webright )\cap R_{-1}\webleft (V\webright ),\\ R_{-1}\webleft (B\webright ) = B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure
    \[ \webleft (R_{-1},R^{\otimes }_{-1},R^{\otimes }_{-1|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\text{Ø}\webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} R^{\otimes }_{-1|U,V} \colon R_{-1}\webleft (U\webright )\cup R_{-1}\webleft (V\webright ) \subset R_{-1}\webleft (U\cup V\webright ),\\ R^{\otimes }_{-1|\mathbb {1}} \colon \text{Ø}\subset R_{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (R_{-1},R^{\otimes }_{-1},R^{\otimes }_{-1|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} R^{\otimes }_{-1|U,V} \colon R_{-1}\webleft (U\cap V\webright ) \mathbin {\overset {=}{\rightarrow }}R_{-1}\webleft (U\webright )\cap R_{-1}\webleft (V\webright ),\\ R^{\otimes }_{-1|\mathbb {1}} \colon R_{-1}\webleft (A\webright ) \mathbin {\overset {=}{\rightarrow }}B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  7. Interaction With Weak Inverse Images I. We have
    \[ R_{-1}\webleft (V\webright )=A\setminus R^{-1}\webleft (B\setminus V\webright ) \]

    for each $V\in \mathcal{P}\webleft (B\webright )$.

  8. Interaction With Weak Inverse Images II. Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.
    1. If $R$ is a total relation, then we have an inclusion of sets
      \[ R_{-1}\webleft (V\webright ) \subset R^{-1}\webleft (V\webright ) \]

      natural in $V\in \mathcal{P}\webleft (B\webright )$.

    2. If $R$ is total and functional, then the above inclusion is in fact an equality.
    3. Conversely, if we have $R_{-1}=R^{-1}$, then $R$ is total and functional.

Item 1: Functoriality
Clear.
Item 2: Adjointness
This follows from , of .
Item 3: Lax Preservation of Colimits
Omitted.
Item 4: Preservation of Limits
This follows from Item 2 and of .
Item 5: Symmetric Lax Monoidality With Respect to Unions
This follows from Item 3.
Item 6: Symmetric Strict Monoidality With Respect to Intersections
This follows from Item 4.
Item 7: Interaction With Weak Inverse Images I
We claim we have an equality
\[ R_{-1}\webleft (B\setminus V\webright )=A\setminus R^{-1}\webleft (V\webright ). \]

Indeed, we have

\begin{align*} R_{-1}\webleft (B\setminus V\webright ) & = \webleft\{ a\in A\ |\ R\webleft (a\webright )\subset B\setminus V\webright\} ,\\ A\setminus R^{-1}\webleft (V\webright ) & = \webleft\{ a\in A\ |\ R\webleft (a\webright )\cap V=\text{Ø}\webright\} .\end{align*}

Taking $V=B\setminus V$ then implies the original statement.

Item 8: Interaction With Weak Inverse Images II
Item (a) is clear, while Item (b) and Item (c) follow from Item 6 of Proposition 7.3.1.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: