Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
-
Functoriality. The assignment $V\mapsto R_{-1}\webleft (V\webright )$ defines a functor
\[ R_{-1}\colon \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ) \]
where
- Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have
\[ \webleft [R_{-1}\webright ]\webleft (V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R_{-1}\webleft (V\webright ); \]
- Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (B\webright )$:
- If $U\subset V$, then $R_{-1}\webleft (U\webright )\subset R_{-1}\webleft (V\webright )$.
- Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have
-
Adjointness. We have an adjunction witnessed by a bijections of sets
\[ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (R_{*}\webleft (U\webright ),V\webright )\cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,R_{-1}\webleft (V\webright )\webright ), \]
natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$, i.e. such that:
- The following conditions are equivalent:
- We have $R_{*}\webleft (U\webright )\subset V$;
- We have $U\subset R_{-1}\webleft (V\webright )$.
- The following conditions are equivalent:
-
Lax Preservation of Colimits. We have an inclusion of sets
\[ \bigcup _{i\in I}R_{-1}\webleft (U_{i}\webright )\subset R_{-1}\webleft (\bigcup _{i\in I}U_{i}\webright ), \]
natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have inclusions
\[ \begin{gathered} R_{-1}\webleft (U\webright )\cup R_{-1}\webleft (V\webright ) \subset R_{-1}\webleft (U\cup V\webright ),\\ \text{Ø}\subset R_{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
-
Preservation of Limits. We have an equality of sets
\[ R_{-1}\webleft (\bigcap _{i\in I}U_{i}\webright )=\bigcap _{i\in I}R_{-1}\webleft (U_{i}\webright ), \]
natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have equalities
\[ \begin{gathered} R_{-1}\webleft (U\cap V\webright ) = R_{-1}\webleft (U\webright )\cap R_{-1}\webleft (V\webright ),\\ R_{-1}\webleft (B\webright ) = B, \end{gathered} \]natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
-
Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure
\[ \webleft (R_{-1},R^{\otimes }_{-1},R^{\otimes }_{-1|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\text{Ø}\webright ), \]
being equipped with inclusions
\[ \begin{gathered} R^{\otimes }_{-1|U,V} \colon R_{-1}\webleft (U\webright )\cup R_{-1}\webleft (V\webright ) \subset R_{-1}\webleft (U\cup V\webright ),\\ R^{\otimes }_{-1|\mathbb {1}} \colon \text{Ø}\subset R_{-1}\webleft (\text{Ø}\webright ), \end{gathered} \]natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
-
Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
\[ \webleft (R_{-1},R^{\otimes }_{-1},R^{\otimes }_{-1|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ), \]
being equipped with equalities
\[ \begin{gathered} R^{\otimes }_{-1|U,V} \colon R_{-1}\webleft (U\cap V\webright ) \mathbin {\overset {=}{\rightarrow }}R_{-1}\webleft (U\webright )\cap R_{-1}\webleft (V\webright ),\\ R^{\otimes }_{-1|\mathbb {1}} \colon R_{-1}\webleft (A\webright ) \mathbin {\overset {=}{\rightarrow }}B, \end{gathered} \]natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
-
Interaction With Weak Inverse Images I. We have
\[ R_{-1}\webleft (V\webright )=A\setminus R^{-1}\webleft (B\setminus V\webright ) \]
for each $V\in \mathcal{P}\webleft (B\webright )$.
-
Interaction With Weak Inverse Images II. Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.
-
If $R$ is a total relation, then we have an inclusion of sets
\[ R_{-1}\webleft (V\webright ) \subset R^{-1}\webleft (V\webright ) \]
natural in $V\in \mathcal{P}\webleft (B\webright )$.
- If $R$ is total and functional, then the above inclusion is in fact an equality.
- Conversely, if we have $R_{-1}=R^{-1}$, then $R$ is total and functional.
-
If $R$ is a total relation, then we have an inclusion of sets