7.1.2 The Reflexive Closure of a Relation

Let $R$ be a relation on $A$.

The reflexive closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$[1] satisfying the following universal property:[2]

  • Given another reflexive relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}\subset \mathord {\sim }_{S}$.

Concretely, $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$ is the free pointed object on $R$ in $\webleft (\mathbf{Rel}\webleft (A,A\webright ),\chi _{A}\webright )$[3], being given by

\begin{align*} R^{\mathrm{refl}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}^{\mathbf{Rel}\webleft (A,A\webright )}}\Delta _{A}\\ & = R\cup \Delta _{A}\\ & = \webleft\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $a=b$}\webright\} .\end{align*}

Clear.

Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{refl}}\webleft (R^{\mathrm{refl}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{refl}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  2. The Reflexive Closure of a Reflexive Relation. If $R$ is reflexive, then $R^{\mathrm{refl}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{refl}}\webright )^{\mathrm{refl}} = R^{\mathrm{refl}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have


Footnotes

[1] Further Notation: Also written $R^{\mathrm{refl}}$.
[2] Slogan: The reflexive closure of $R$ is the smallest reflexive relation containing $R$.
[3] Or, equivalently, the free $\mathbb {E}_{0}$-monoid on $R$ in $\webleft (\mathrm{N}_{\bullet }\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright ),\chi _{A}\webright )$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: