7.2.2 The Symmetric Closure of a Relation

Let $R$ be a relation on $A$.

The symmetric closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$[1] satisfying the following universal property:[2]

  • Given another symmetric relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}\subset \mathord {\sim }_{S}$.

Concretely, $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$ is the symmetric relation on $A$ defined by

\begin{align*} R^{\mathrm{symm}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\cup R^{\dagger }\\ & = \webleft\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $b\sim _{R}a$}\webright\} .\end{align*}

Clear.

Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{symm}}\webleft (R^{\mathrm{symm}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{symm}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  2. The Symmetric Closure of a Symmetric Relation. If $R$ is symmetric, then $R^{\mathrm{symm}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{symm}}\webright )^{\mathrm{symm}} = R^{\mathrm{symm}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have


Footnotes

[1] Further Notation: Also written $R^{\mathrm{symm}}$.
[2] Slogan: The symmetric closure of $R$ is the smallest symmetric relation containing $R$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: