Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{symm}}\webleft (R^{\mathrm{symm}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{symm}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  2. The Symmetric Closure of a Symmetric Relation. If $R$ is symmetric, then $R^{\mathrm{symm}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{symm}}\webright )^{\mathrm{symm}} = R^{\mathrm{symm}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: