Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\text{eq}}\webleft (R^{\mathrm{eq}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\text{eq}}\webleft (A,B\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$.

  2. The Equivalence Closure of an Equivalence Relation. If $R$ is an equivalence relation, then $R^{\mathrm{eq}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{eq}}\webright )^{\mathrm{eq}} = R^{\mathrm{eq}}. \]

Item 1: Adjointness
This is a rephrasing of the universal property of the equivalence closure of a relation, stated in Definition 7.4.2.1.1.
Item 2: The Equivalence Closure of an Equivalence Relation
Clear.

Item 3: Idempotency
This follows from Item 2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: