8.1.5 Skeletons of Categories

A[1] skeleton of a category $\mathcal{C}$ is a full subcategory $\mathsf{Sk}\webleft (\mathcal{C}\webright )$ with one object from each isomorphism class of objects of $\mathcal{C}$.

A category $\mathcal{C}$ is skeletal if $\mathcal{C}\cong \mathsf{Sk}\webleft (\mathcal{C}\webright )$.[2]

Let $\mathcal{C}$ be a category.

  1. Existence. Assuming the axiom of choice, $\mathsf{Sk}\webleft (\mathcal{C}\webright )$ always exists.
  2. Pseudofunctoriality. The assignment $\mathcal{C}\mapsto \mathsf{Sk}\webleft (\mathcal{C}\webright )$ defines a pseudofunctor
    \[ \mathsf{Sk}\colon \mathsf{Cats}_{\mathsf{2}}\to \mathsf{Cats}_{\mathsf{2}}. \]
  3. Uniqueness Up to Equivalence. Any two skeletons of $\mathcal{C}$ are equivalent.
  4. Inclusions of Skeletons Are Equivalences. The inclusion
    \[ \iota _{\mathcal{C}}\colon \mathsf{Sk}\webleft (\mathcal{C}\webright )\hookrightarrow \mathcal{C} \]

    of a skeleton of $\mathcal{C}$ into $\mathcal{C}$ is an equivalence of categories.

Item 1: Existence
See Section “Existence of Skeletons of Categories” of [nLab, Skeleton].
Item 2: Pseudofunctoriality
See Section “Skeletons as an Endo-Pseudofunctor on $\mathfrak {Cat}$” of [nLab, Skeleton].
Item 3: Uniqueness Up to Equivalence
Clear.
Item 4: Inclusions of Skeletons Are Equivalences
Clear.


Footnotes

[1] Due to Item 3 of Proposition 8.1.5.1.3, we often refer to any such full subcategory $\mathsf{Sk}\webleft (\mathcal{C}\webright )$ of $\mathcal{C}$ as the skeleton of $\mathcal{C}$.
[2] That is, $\mathcal{C}$ is skeletal if isomorphic objects of $\mathcal{C}$ are equal.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: