A category $\mathcal{C}$ is skeletal if $\mathcal{C}\cong \mathsf{Sk}\webleft (\mathcal{C}\webright )$.1
1That is, $\mathcal{C}$ is skeletal if isomorphic objects of $\mathcal{C}$ are equal.
Here's a breakdown of the differences between each PDF style:
Style | Class | Font | Theorem Environments |
---|---|---|---|
Style 1 | book |
Alegreya Sans | tcbthm |
Style 2 | book |
Alegreya Sans | amsthm |
Style 3 | book |
Arno* | amsthm |
Style 4 | book |
Computer Modern | amsthm |
*To be replaced with Linus Romer's Elemaints when it is released.
A category $\mathcal{C}$ is skeletal if $\mathcal{C}\cong \mathsf{Sk}\webleft (\mathcal{C}\webright )$.1