Let $X$ be a set.

  1. Functoriality. The assignment $X\mapsto X_{\mathsf{disc}}$ defines a functor
    \[ \webleft (-\webright )_{\mathsf{disc}} \colon \mathsf{Sets}\to \mathsf{Cats}. \]
  2. Adjointness. We have a quadruple adjunction
  3. Symmetric Strong Monoidality With Respect to Coproducts. The functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\webleft (-\webright )_{\mathsf{disc}},\webleft (-\webright )^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathsf{disc}},\webleft (-\webright )^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathsf{disc}|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}\webright ) \to \webleft (\mathsf{Cats},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}_{\mathsf{cat}}\webright ), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \webleft (-\webright )^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathsf{disc}|X,Y} \colon X_{\mathsf{disc}}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y_{\mathsf{disc}} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )_{\mathsf{disc}},\\ \webleft (-\webright )^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathsf{disc}|\mathbb {1}} \colon \text{Ø}_{\mathsf{cat}}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{Ø}_{\mathsf{disc}}, \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Symmetric Strong Monoidality With Respect to Products. The functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\webleft (-\webright )_{\mathsf{disc}},\webleft (-\webright )^{\times }_{\mathsf{disc}},\webleft (-\webright )^{\times }_{\mathsf{disc}|\mathbb {1}}\webright ) \colon \webleft (\mathsf{Sets},\times ,\text{pt}\webright ) \to \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \webleft (-\webright )^{\times }_{\mathsf{disc}|X,Y} \colon X_{\mathsf{disc}}\times Y_{\mathsf{disc}} \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\times Y\webright )_{\mathsf{disc}},\\ \webleft (-\webright )^{\times }_{\mathsf{disc}|\mathbb {1}} \colon \mathsf{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{pt}_{\mathsf{disc}}, \end{gathered} \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

Item 1: Functoriality
Clear.
Item 2: Adjointness
This is proved in Proposition 9.3.1.1.1.
Item 3: Symmetric Strong Monoidality With Respect to Coproducts
Clear.
Item 4: Symmetric Strong Monoidality With Respect to Products
Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: