8.3.3 The Core of a Category

Let $\mathcal{C}$ be a category.

The core of $\mathcal{C}$ is the pair $\webleft (\mathsf{Core}\webleft (\mathcal{C}\webright ),\iota _{\mathcal{C}}\webright )$ consisting of

  • A groupoid $\mathsf{Core}\webleft (\mathcal{C}\webright )$;
  • A functor $\iota _{\mathcal{C}}\colon \mathsf{Core}\webleft (\mathcal{C}\webright )\hookrightarrow \mathcal{C}$;
satisfying the following universal property:

  • Given another such pair $\webleft (\mathcal{G},i\webright )$, there exists a unique functor $\mathcal{G}\overset {\exists !}{\to }\mathsf{Core}\webleft (\mathcal{C}\webright )$ making the diagram

    commute.

We also write $\mathcal{C}^{\simeq }$ for $\mathsf{Core}\webleft (\mathcal{C}\webright )$.

The core of $\mathcal{C}$ is the wide subcategory of $\mathcal{C}$ spanned by the isomorphisms of $\mathcal{C}$, i.e. the category $\mathsf{Core}\webleft (\mathcal{C}\webright )$ where[1]

  1. Objects. We have
    \[ \text{Obj}\webleft (\mathsf{Core}\webleft (\mathcal{C}\webright )\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Obj}\webleft (\mathcal{C}\webright ). \]
  2. Morphisms. The morphisms of $\mathsf{Core}\webleft (\mathcal{C}\webright )$ are the isomorphisms of $\mathcal{C}$.

Let $\mathcal{C}$ be a category.

  1. Functoriality. The assignment $\mathcal{C}\mapsto \mathsf{Core}\webleft (\mathcal{C}\webright )$ defines a functor
    \[ \mathsf{Core}\colon \mathsf{Cats}\to \mathsf{Grpd}. \]
  2. 2-Functoriality. The assignment $\mathcal{C}\mapsto \mathsf{Core}\webleft (\mathcal{C}\webright )$ defines a 2-functor
    \[ \mathsf{Core}\colon \mathsf{Cats}_{\mathsf{2}}\to \mathsf{Grpd}_{\mathsf{2}}. \]
  3. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{G},\mathcal{D}\webright )\cong \textup{Hom}_{\mathsf{Grpd}}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ), \]

    natural in $\mathcal{G}\in \text{Obj}\webleft (\mathsf{Grpd}\webright )$ and $\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, forming, together with the functor $\mathrm{K}_{0}$ of Item 1 of Proposition 8.3.2.1.3, a triple adjunction

    witnessed by bijections of sets

    \begin{align*} \textup{Hom}_{\mathsf{Grpd}}\webleft (\mathrm{K}_{0}\webleft (\mathcal{C}\webright ),\mathcal{G}\webright ) & \cong \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{G}\webright ),\\ \textup{Hom}_{\mathsf{Cats}}\webleft (\mathcal{G},\mathcal{D}\webright ) & \cong \textup{Hom}_{\mathsf{Grpd}}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ),\end{align*}

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$ and $\mathcal{G}\in \text{Obj}\webleft (\mathsf{Grpd}\webright )$.

  4. 2-Adjointness. We have an adjunction
    witnessed by an isomorphism of categories
    \[ \mathsf{Fun}\webleft (\mathcal{G},\mathcal{D}\webright )\cong \mathsf{Fun}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ), \]

    natural in $\mathcal{G}\in \text{Obj}\webleft (\mathsf{Grpd}\webright )$ and $\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$, forming, together with the 2-functor $\mathrm{K}_{0}$ of Item 2 of Proposition 8.3.2.1.3, a triple 2-adjunction

    witnessed by isomorphisms of categories

    \begin{align*} \mathsf{Fun}\webleft (\mathrm{K}_{0}\webleft (\mathcal{C}\webright ),\mathcal{G}\webright ) & \cong \mathsf{Fun}\webleft (\mathcal{C},\mathcal{G}\webright ),\\ \mathsf{Fun}\webleft (\mathcal{G},\mathcal{D}\webright ) & \cong \mathsf{Fun}\webleft (\mathcal{G},\mathsf{Core}\webleft (\mathcal{D}\webright )\webright ),\end{align*}

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$ and $\mathcal{G}\in \text{Obj}\webleft (\mathsf{Grpd}\webright )$.

  5. Symmetric Strong Monoidality With Respect to Products. The core functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\mathsf{Core},\mathsf{Core}^{\times },\mathsf{Core}^{\times }_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Cats},\times ,\mathsf{pt}\webright ) \to \webleft (\mathsf{Grpd},\times ,\mathsf{pt}\webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathsf{Core}^{\times }_{\mathcal{C},\mathcal{D}} \colon \mathsf{Core}\webleft (\mathcal{C}\webright )\times \mathsf{Core}\webleft (\mathcal{D}\webright ) \xrightarrow {\cong }\mathsf{Core}\webleft (\mathcal{C}\times \mathcal{D}\webright ),\\ \mathsf{Core}^{\times }_{\mathbb {1}} \colon \mathsf{pt}\xrightarrow {\cong }\mathsf{Core}\webleft (\mathsf{pt}\webright ), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

  6. Symmetric Strong Monoidality With Respect to Coproducts. The core functor of Item 1 has a symmetric strong monoidal structure
    \[ \webleft (\mathsf{Core},\mathsf{Core}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}},\mathsf{Core}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}}\webright ) \colon \webleft (\mathsf{Cats},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset _{\mathsf{cat}}\webright ) \to \webleft (\mathsf{Grpd},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset _{\mathsf{cat}}\webright ) \]

    being equipped with isomorphisms

    \[ \begin{gathered} \mathsf{Core}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathcal{C},\mathcal{D}} \colon \mathsf{Core}\webleft (\mathcal{C}\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathsf{Core}\webleft (\mathcal{D}\webright ) \xrightarrow {\cong }\mathsf{Core}\webleft (\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}\webright ),\\ \mathsf{Core}^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{\mathbb {1}} \colon \emptyset _{\mathsf{cat}}\xrightarrow {\cong }\mathsf{Core}\webleft (\emptyset _{\mathsf{cat}}\webright ), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \text{Obj}\webleft (\mathsf{Cats}\webright )$.

Item 1: Functoriality
Omitted.
Item 2: 2-Functoriality
Omitted.
Item 3: Adjointness
Omitted.
Item 4: 2-Adjointness
Omitted.
Item 5: Symmetric Strong Monoidality With Respect to Products
Omitted.
Item 6: Symmetric Strong Monoidality With Respect to Coproducts
Omitted.


Footnotes

[1] Slogan: The groupoid $\mathsf{Core}\webleft (\mathcal{C}\webright )$ is the maximal subgroupoid of $\mathcal{C}$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: