The core of $\mathcal{C}$ is the wide subcategory of $\mathcal{C}$ spanned by the isomorphisms of $\mathcal{C}$, i.e. the category $\mathsf{Core}\webleft (\mathcal{C}\webright )$ where1

  1. Objects. We have
    \[ \text{Obj}\webleft (\mathsf{Core}\webleft (\mathcal{C}\webright )\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Obj}\webleft (\mathcal{C}\webright ). \]
  2. Morphisms. The morphisms of $\mathsf{Core}\webleft (\mathcal{C}\webright )$ are the isomorphisms of $\mathcal{C}$.


1Slogan: The groupoid $\mathsf{Core}\webleft (\mathcal{C}\webright )$ is the maximal subgroupoid of $\mathcal{C}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: