The identity functor of a category $\mathcal{C}$ is the functor $\text{id}_{\mathcal{C}}\colon \mathcal{C}\to \mathcal{C}$ where
-
Action on Objects. For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, we have
\[ \text{id}_{\mathcal{C}}\webleft (A\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A. \]
-
Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
\[ \webleft (\text{id}_{\mathcal{C}}\webright )_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \underbrace{\textup{Hom}_{\mathcal{C}}\webleft (\text{id}_{\mathcal{C}}\webleft (A\webright ),\text{id}_{\mathcal{C}}\webleft (B\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\textup{Hom}_{\mathcal{C}}\webleft (A,B\webright )} \]
of $\text{id}_{\mathcal{C}}$ at $\webleft (A,B\webright )$ is defined by
\[ \webleft (\text{id}_{\mathcal{C}}\webright )_{A,B} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{\textup{Hom}_{\mathcal{C}}\webleft (A,B\webright )}. \]