The composition of two functors $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ is the functor $G\circ F$ where
- Action on Objects. For each $A\in \text{Obj}\webleft (\mathcal{C}\webright )$, we have
\[ \webleft [G\circ F\webright ]\webleft (A\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\webleft (F\webleft (A\webright )\webright ). \]
- Action on Morphisms. For each $A,B\in \text{Obj}\webleft (\mathcal{C}\webright )$, the action on morphisms
\[ \webleft (G\circ F\webright )_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{E}}\webleft (G_{F_{A}},G_{F_{B}}\webright ) \]
of $G\circ F$ at $\webleft (A,B\webright )$ is defined by
\[ \webleft [G\circ F\webright ]\webleft (f\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\webleft (F\webleft (f\webright )\webright ). \]