Examples of forgetful functors that forget structure include:

  1. Forgetting Group Structures. The functor $\mathsf{Grp}\to \mathsf{Sets}$ sending a group $\webleft (G,\mu _{G},\eta _{G}\webright )$ to its underlying set $G$, forgetting the multiplication and unit maps $\mu _{G}$ and $\eta _{G}$ of $G$.
  2. Forgetting Topologies. The functor $\mathsf{Top}\to \mathsf{Sets}$ sending a topological space $\webleft (X,\mathcal{T}_{X}\webright )$ to its underlying set $X$, forgetting the topology $\mathcal{T}_{X}$.
  3. Forgetting Fibrations. The functor $\mathsf{FibSets}\webleft (K\webright )\to \mathsf{Sets}$ sending a $K$-fibred set $\phi _{X}\colon X\to K$ to the set $X$, forgetting the map $\phi _{X}$ and the base set $K$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: