8.4.4 The Natural Transformation Associated to a Functor

Every functor $F\colon \mathcal{C}\to \mathcal{D}$ defines a natural transformation[1]

called the natural transformation associated to $F$, consisting of the collection

\[ \webleft\{ F^{\dagger }_{A,B} \colon \textup{Hom}_{\mathcal{C}}\webleft (A,B\webright ) \to \textup{Hom}_{\mathcal{D}}\webleft (F_{A},F_{B}\webright ) \webright\} _{\webleft (A,B\webright )\in \text{Obj}\webleft (\mathcal{C}^{\mathsf{op}}\times \mathcal{C}\webright )} \]

with

\[ F^{\dagger }_{A,B} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}F_{A,B}. \]

The naturality condition for $F^{\dagger }$ is the requirement that for each morphism

\[ \webleft (\phi ,\psi \webright ) \colon \webleft (X,Y\webright ) \to \webleft (A,B\webright ) \]

of $\mathcal{C}^{\mathsf{op}}\times \mathcal{C}$, the diagram

acting on elements as

commutes, which follows from the functoriality of $F$.

Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

  1. Interaction With Natural Isomorphisms. The following conditions are equivalent:
    1. The natural transformation $F^{\dagger }\colon \textup{Hom}_{\mathcal{C}}\Longrightarrow {\textup{Hom}_{\mathcal{D}}}\circ {\webleft (F^{\mathsf{op}}\times F\webright )}$ associated to $F$ is a natural isomorphism.
    2. The functor $F$ is fully faithful.
  2. Interaction With Composition. We have an equality of pasting diagrams
    in $\mathsf{Cats}_{\mathsf{2}}$, i.e. we have
    \[ \webleft (G\circ F\webright )^{\dagger }=\webleft (G^{\dagger }\mathbin {\star }\text{id}_{F^{\mathsf{op}}\times F}\webright )\circ F^{\dagger }. \]
  3. Interaction With Identities. We have
    \[ \text{id}^{\dagger }_{\mathcal{C}}=\text{id}_{\textup{Hom}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )}, \]

    i.e. the natural transformation associated to $\text{id}_{\mathcal{C}}$ is the identity natural transformation of the functor $\textup{Hom}_{\mathcal{C}}\webleft (-_{1},-_{2}\webright )$.

Item 1: Interaction With Natural Isomorphisms
Clear.
Item 2: Interaction With Composition
Clear.

Item 3: Interaction With Identities
Clear.


Footnotes

[1] This is the $1$-categorical version of Chapter 2: Constructions With Sets, Item 1 of Proposition 2.4.1.1.3.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: